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duration: 3h

— any document allowed

a pocket calculator is allowed

— communication devices are not allowed

— the exam invigilators will not answer any technical question during the exam
readability and style of writing will be part of the grade

1 Blind Computing with a DH Oracle

The goal of this exercise is to look at what happens when the discrete logarithm problem
is hard but the Diffie-Hellman problem is easy. Let g be an element of a group of prime
order q. Computing the discrete logarithm in the group generated by g is assumed to be
hard. We assume that we have an oracle function DH(X,Y") such that when queried with
X =g and Y = ¢Y for integers x and y, it returns DH(g”, g¥) = ¢*¥ with one unit of time
complexity.

In this exercise we construct series of algorithms using the oracle DH. These algo-
rithms also know ¢g and ¢. They can perform a group multiplication and a group inversion
within one unit of time complexity. In each question of this exercise except the last one,
we define a function by a property based on values which are not always computable.
For instance, a blind multiplication defined by fy(¢%, ¢¥) = ¢*¥ is implemented by the
algorithm
fQ (X, Y)

1. Z «< DH(X,Y)
2: return Z
without being able to compute the logarithms x or y of X and Y.

For each of these questions, define an efficient algorithm to implement the computation
of the function and give its complexity. When studying the complexity, separate the num-
ber of queries, the number of group multiplications/inversions, and the usual asymptotic
complexity of other operations.

Q.1 (blind addition) fi(g%, g¥) = g**V.

Q.2 (blind scalar multiplication) f5(a, g*) = ¢°* when a is an integer (positive or negative).

Q.3 (blind power) f3(e,g%) = ¢° when e is a positive integer.

Q.4 (blind sparse polynomial) fy(ar,e1, ..., an, €, g%) = go~i=1%*" when the e,’s are positive
integers and the a;’s are nonzero integers.

Q.5 (blind inversion) f5(g*) = gz ™44 when g% # 1.



Q.6 (blind e-th root when e is invertible) fs(e, g") = ¢¥ when e is a positive integer which
is coprime with ¢ — 1.

Q.7 (blind square root) f7(g¥") € {g¥, g ¥}. (For simplicity, we assume ¢ mod 4 = 3.)

Q.8 With the same notations and assumptions, construct a commitment scheme which is
deterministic computationally hiding and perfectly binding on Z,, with the property
that given a rational function f(xi,...,x,) and some commitments on 1, ..., and z,,
it is easy to deduce a commitment to f(z1,...,x,) without knowing x1, ..., z,.



2  On the Necessary Number of Samples to Distinguish a Biased
Coin

We are given a source of independent random bits following one given distribution. We
want to distinguish a given distribution from the uniform one. The goal of this exercise is
to prove that if € is the statistical distance between the two distributions, then £72 is a
necessary and sufficient order of magnitude of number of samples which is needed to reach
an advantage of 3 or higher.

Given two random variables X and Y with the same support Z, we define
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In what follows, some questions are more related to calculus than cryptography. Their
results are necessary for the exercise but left as “bonus questions”.

Q.1 Let p = 3(1 +¢) for some € € [~1,+1] and the X,’s be independent boolean random
variables with expected value p. Let the Y;’s be independent uniformly distributed
boolean random variables. Given a number of samples n, we want to distinguish X =
(X1,...,X,) from Y = (Y7,...,Y,). We assume that the value of ¢ is known.

Q.1la Given a threshold A, we propose the distinguisher

1: get the samples zq,..., 2,
2: compute s =21 4+ -+ + 2,
3. if 2 > A then
4:  return 1
5: else
6 return 0
7. end if
Show that for some value A* (give the formula) of A, this distinguisher is optimal
among those using n samples.
Q.1b (Bonus question) Show that A* is close to 3 + £ when |e| is small.
HINT: for 6 close to 0, In(1+0) =6 — % + 0(6?).
Q.1c For n = 12¢72, show that the advantage of the above distinguisher for A = % +
greater than 3.
HINT: if Z,,...,Z, are i.i.d. boolean random variables of expected value pu, the
Chernoff-Hoeffding bound says that Pr[Z; + - -- + Z, < n(u —t)] < e 2",
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The goal of the next questions is to show that for n < 72, the best advantage is
negligible.

Q.2 If X; and X, are independent and Y] and Y3 are independent, for X = (X7, X5) and
Y = (Y, Ya), show that D(X[[Y) = D(Xi][V1) + D(XsYa).



Q.3 Given two random boolean variables X’ and Y, show that L();l/l’f;/)Q < D(X'||Y").
HINT: express g(t) = (2In2) - D(X'[|]Y") — L(X’,Y")? in terms of ¢t = Pr[X’ = 1] then
derivate g(t) to study the variations of this function.

Q.4 (Bonus question) Let p = 3(1 4 ¢) for some ¢ € [—1,+1] and X; be a boolean random
variable with expected value p. Let Y; be a uniformly distributed boolean random
variable. Show that D(X1|V1) < Grsra—sy-

HINT: the Taylor-Lagrange Theorem states that there exists some ¢, between t; and ¢
such that g(t) = g(to) + ¢'(to)(t — to) + 59" (t2)(t — t0)*.

Q.5 The aim of the next sub-questions is to show that for all function f, D(f(X)|f(Y)) <
D(X||Y).

Q.5a Show D(g(X)|lg(Y)) = D(X]]Y) for all 1-to-1 mapping g.

Q.5b We say that m is a merging function if every input = except one is a fixed point
of m, i.e. m(x) = x. Show that an arbitrary f can be written as a composition
f =gom,o---om; of merging functions m; and a 1-to-1 function g, for some
integer n.
HINT: make a proof by induction based on the number of collisions.

Q.5¢ (Bonus question) Show that for all positive «, 5, ’, 8’ real numbers,

atp <alng/+ﬁln£
o

O[/ + /6/ — /6/

Deduce that D(m;(X)|m;(Y)) < D(X||Y) for all merging functions m; (as defined
in Q.5b).

HINT: use the convexity of x — x Inz on the two points . and g and their weighted

average a‘fig

Q.5d Show that D(f(X)||f(Y)) < D(X]|Y) for all functions f.
Q.6 Show that the best advantage Adv to distinguish the boolean random variables X; and

Y, for B(X;) =p=1(1+¢) and E(Y;) = 1 satisfies Adv < 1 x |/, Assuming that

le] < %, deduce that for n < 72, the best advantage is negligible.

HINT: define f the function mapping the vector of n sample bits to the outcome of the
distinguisher. Given X’ = f(Xy,...,X,) and Y/ = f(Y1,...,Y,) for some independent
uniformly distributed bits Y7,...,Y,, express the advantage in terms of L(X’,Y’) and
bound it in terms of D(X'||Y’).
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