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– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Blind Computing with a DH Oracle

The goal of this exercise is to look at what happens when the discrete logarithm problem
is hard but the Diffie-Hellman problem is easy. Let g be an element of a group of prime
order q. Computing the discrete logarithm in the group generated by g is assumed to be
hard. We assume that we have an oracle function DH(X, Y ) such that when queried with
X = gx and Y = gy for integers x and y, it returns DH(gx, gy) = gxy with one unit of time
complexity.

In this exercise we construct series of algorithms using the oracle DH. These algo-
rithms also know g and q. They can perform a group multiplication and a group inversion
within one unit of time complexity. In each question of this exercise except the last one,
we define a function by a property based on values which are not always computable.
For instance, a blind multiplication defined by f0(g

x, gy) = gxy is implemented by the
algorithm

f0(X, Y ):
1: Z ← DH(X, Y )
2: return Z

without being able to compute the logarithms x or y of X and Y .
For each of these questions, define an efficient algorithm to implement the computation

of the function and give its complexity. When studying the complexity, separate the num-
ber of queries, the number of group multiplications/inversions, and the usual asymptotic
complexity of other operations.

Q.1 (blind addition) f1(g
x, gy) = gx+y.

Q.2 (blind scalar multiplication) f2(a, g
x) = gax when a is an integer (positive or negative).

Q.3 (blind power) f3(e, g
x) = gx

e
when e is a positive integer.

Q.4 (blind sparse polynomial) f4(a1, e1, . . . , an, en, g
x) = g

∑n
i=1 aix

ei when the ei’s are positive
integers and the ai’s are nonzero integers.

Q.5 (blind inversion) f5(g
x) = g

1
x
mod q when gx ̸= 1.



Q.6 (blind e-th root when e is invertible) f6(e, g
ye) = gy when e is a positive integer which

is coprime with q − 1.
Q.7 (blind square root) f7(g

y2) ∈ {gy, g−y}. (For simplicity, we assume q mod 4 = 3.)
Q.8 With the same notations and assumptions, construct a commitment scheme which is

deterministic computationally hiding and perfectly binding on Zq, with the property
that given a rational function f(x1, . . . , xn) and some commitments on x1, ..., and xn,
it is easy to deduce a commitment to f(x1, . . . , xn) without knowing x1, . . . , xn.



2 On the Necessary Number of Samples to Distinguish a Biased
Coin

We are given a source of independent random bits following one given distribution. We
want to distinguish a given distribution from the uniform one. The goal of this exercise is
to prove that if ε is the statistical distance between the two distributions, then ε−2 is a
necessary and sufficient order of magnitude of number of samples which is needed to reach
an advantage of 1

2
or higher.

Given two random variables X and Y with the same support Z, we define

L(X, Y ) =
∑
z∈Z

|Pr[X = z]− Pr[Y = z]|

D(X∥Y ) =
∑
z∈Z

Pr[X = z] log2
Pr[X = z]

Pr[Y = z]

In what follows, some questions are more related to calculus than cryptography. Their
results are necessary for the exercise but left as “bonus questions”.

Q.1 Let p = 1
2
(1 + ε) for some ε ∈ [−1,+1] and the Xi’s be independent boolean random

variables with expected value p. Let the Yi’s be independent uniformly distributed
boolean random variables. Given a number of samples n, we want to distinguish X =
(X1, . . . , Xn) from Y = (Y1, . . . , Yn). We assume that the value of ε is known.

Q.1a Given a threshold λ, we propose the distinguisher

1: get the samples z1, . . . , zn
2: compute s = z1 + · · ·+ zn
3: if s

n
≥ λ then

4: return 1
5: else
6: return 0
7: end if

Show that for some value λ∗ (give the formula) of λ, this distinguisher is optimal
among those using n samples.

Q.1b (Bonus question) Show that λ∗ is close to 1
2
+ ε

4
when |ε| is small.

HINT: for θ close to 0, ln(1 + θ) = θ − θ2

2
+ o(θ2).

Q.1c For n = 12ε−2, show that the advantage of the above distinguisher for λ = 1
2
+ ε

4
is

greater than 1
2
.

HINT: if Z1, . . . , Zn are i.i.d. boolean random variables of expected value µ, the
Chernoff-Hoeffding bound says that Pr[Z1 + · · ·+ Zn < n(µ− t)] ≤ e−2nt2 .

The goal of the next questions is to show that for n ≪ ε−2, the best advantage is
negligible.

Q.2 If X1 and X2 are independent and Y1 and Y2 are independent, for X = (X1, X2) and
Y = (Y1, Y2), show that D(X∥Y ) = D(X1∥Y1) +D(X2∥Y2).



Q.3 Given two random boolean variables X ′ and Y ′, show that L(X′,Y ′)2

2 ln 2
≤ D(X ′∥Y ′).

HINT: express g(t) = (2 ln 2) ·D(X ′∥Y ′)− L(X ′, Y ′)2 in terms of t = Pr[X ′ = 1] then
derivate g(t) to study the variations of this function.

Q.4 (Bonus question) Let p = 1
2
(1 + ε) for some ε ∈ [−1,+1] and X1 be a boolean random

variable with expected value p. Let Y1 be a uniformly distributed boolean random
variable. Show that D(X1∥Y1) ≤ ε2

(2 ln 2)·(1−ε2)
.

HINT: the Taylor-Lagrange Theorem states that there exists some t2 between t0 and t
such that g(t) = g(t0) + g′(t0)(t− t0) +

1
2
g′′(t2)(t− t0)

2.
Q.5 The aim of the next sub-questions is to show that for all function f , D(f(X)∥f(Y )) ≤

D(X∥Y ).
Q.5a Show D(g(X)∥g(Y )) = D(X∥Y ) for all 1-to-1 mapping g.
Q.5b We say that m is a merging function if every input x except one is a fixed point

of m, i.e. m(x) = x. Show that an arbitrary f can be written as a composition
f = g ◦ mn ◦ · · · ◦ m1 of merging functions mi and a 1-to-1 function g, for some
integer n.
HINT: make a proof by induction based on the number of collisions.

Q.5c (Bonus question) Show that for all positive α, β, α′, β′ real numbers,

(α + β) ln
α + β

α′ + β′ ≤ α ln
α

α′ + β ln
β

β′

Deduce that D(mi(X)∥mi(Y )) ≤ D(X∥Y ) for all merging functions mi (as defined
in Q.5b).
HINT: use the convexity of x 7→ x lnx on the two points α

α′ and
β
β′ and their weighted

average α+β
α′+β′ .

Q.5d Show that D(f(X)∥f(Y )) ≤ D(X∥Y ) for all functions f .
Q.6 Show that the best advantage Adv to distinguish the boolean random variables Xi and

Yi, for E(Xi) = p = 1
2
(1 + ε) and E(Yi) =

1
2
satisfies Adv ≤ 1

2
×
√

nε2

1−ε2
. Assuming that

|ε| ≤ 1
2
, deduce that for n≪ ε−2, the best advantage is negligible.

HINT: define f the function mapping the vector of n sample bits to the outcome of the
distinguisher. Given X ′ = f(X1, . . . , Xn) and Y ′ = f(Y1, . . . , Yn) for some independent
uniformly distributed bits Y1, . . . , Yn, express the advantage in terms of L(X ′, Y ′) and
bound it in terms of D(X ′∥Y ′).


