Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

28.4.2015

— duration: 3h

— any document allowed

— a pocket calculator is allowed

— communication devices are not allowed

— the exam invigilators will not answer any technical question during the exam
— readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Blind Computing with a DH Oracle

The goal of this exercise is to look at what happens when the discrete logarithm problem
is hard but the Diffie-Hellman problem is easy. Let g be an element of a group of prime
order q. Computing the discrete logarithm in the group generated by g is assumed to be
hard. We assume that we have an oracle function DH(X,Y") such that when queried with
X =g¢* and Y = ¢¥ for integers = and y, it returns DH(g", ¢¥) = ¢g*¥ with one unit of time
complexity.

In this exercise we construct series of algorithms using the oracle DH. These algo-
rithms also know g and ¢. They can perform a group multiplication and a group inversion
within one unit of time complexity. In each question of this exercise except the last one,
we define a function by a property based on values which are not always computable.
For instance, a blind multiplication defined by fy(¢%, ¢¥) = ¢*¥ is implemented by the
algorithm
fo(X,Y):

1: Z + DH(X,Y)
2: return Z
without being able to compute the logarithms x or y of X and Y.

For each of these questions, define an efficient algorithm to implement the computation
of the function and give its complexity. When studying the complexity, separate the num-
ber of queries, the number of group multiplications/inversions, and the usual asymptotic
complexity of other operations.

Q.1 (blind addition) fi(g%, ¢¥) = g**v.

fl(X,Y)
1: Z+ XxY

2: return 4

The complexity is of 1 group multiplication.

Q.2 (blind scalar multiplication) fo(a, g*) = ¢°* when a is an integer (positive or negative).

We note that ¢g** = X°. So, we just apply the square-and-multiply algorithm
to compute X®.
f2 (CL, X) :

1: if a =0 return 1

2: write |a| in binary |a| = Zf:ol a;2" with a; € {0,1} and a;_1 = 1.

3 Z +— X

4: fori=1{0—2 down to 0 do

5 LI XZ

6: ifa;=1do <+ ZxX

7. end for

8: ifa<0doZ <« 1/Z

9: return Z

We have { = [log, |a|| + 1. The complezity is of up to 20 —2 group multiplica-
tions, up to 1 inversion, and O({) other operations.

Q.3 (blind power) f3(e,g%) = ¢° when e is a positive integer.

We apply again the square-and-multiply algorithm, but with the DH oracle for|
the multiplications.

f3(67X).'
1: if a =0 return 1

2 write e in binary e = Y} €,2" with e; € {0,1} and ey = 1.
3 2 +— X

4: fori=1{0—2 down to 0 do

5: Z <« DH(Z,2)

6: ife;=1do Z + DH(Z, X)

- end for

8 return Z

We have £ = |logye| + 1. The complezity is of up to 2¢ — 2 DH oracle calls
and O(C) other operations.

Q.4 (blind sparse polynomial) fy(ay, €1, ..., an,en, g%) = g2i=1%*" when the e,’s are positive
integers and the a;’s are nonzero integers.

Using the previous questions, we just compute all g**, raise them to the a;
powers, and multiply them all.
falar,eq, ... an,en, X):
1: 4+ 1
:fori=1ton do
compute T = f3(e;, X)
compute T = fo(a;, T')
compute Z = Z x T
end for
7: return 4

D S e

The complezity is bounded by n+ 23", log, |a;| multiplications, n inversions,
23" log, e; DH oracle calls, and O(n+ > log,(|aile;)) other operations.

Q.5 (blind inversion) f5(g*) = gz ™04 when ¢% # 1.

We observe that % = 2772 (mod q). So, we just compute g* for e = q —
2.
f5(X):

1: L+ fg(q— Q,X)

2: return Z

The complezity is bounded by 2log, q oracle calls and O(log, q) other opera-
tions.

Q.6 (blind e-th root when e is invertible) fs(e, g¥") = ¢g¥ when e is a positive integer which
is coprime with ¢ — 1.

We observe that if y* = x (mod q), then

y = e mod (¢-1)

(mod q)
So, we can just compute % mod (¢ — 1) wusing the extended FEuclid Al-
gorithm in complexity quadratic in logq then wuse the previous algo-
rithms.
fﬁ(evX)"

1: compute t = 1/e mod (¢ — 1) using the extended Euclid Algorithm

2: 7« f3(t, X)

3: return Z

The complexity is bounded by 2log, q oracle calls plus O((log q)?) other oper-
ations.

Q.7 (blind square root) f-(¢¥°) € {g¥,g7¥}. (For simplicity, we assume ¢ mod 4 = 3.)

We observe that z™t mod q is a square root of x whenever such square
root exists. So, we use the previous algorithms to compute ¢g* for e =
%1. Note that the two square roots are then x¢ and —z°¢ so (y*)¢ €
{v. —y}-
J2(X):

1: compute e
2: [f3<67X)

3: return Z

The complexity is bounded by 2log, q oracle calls and O(log q) other operations.

_ gtl
4

Q.8 With the same notations and assumptions, construct a commitment scheme which is
deterministic computationally hiding and perfectly binding on Z,, with the property
that given a rational function f(z1,...,x,) and some commitments on zi, ..., and x,,
it is easy to deduce a commitment to f(z1,...,x,) without knowing x1, ..., z,.

The mapping Com : x + g* is such a commitment!

Indeed, it is deterministic. If the discrete logarithm is hard, it is determinis-
tic computationally hiding. Since it is injective on Zg, it is perfectly binding
(there is no collision). From Com(z) and Com(y), we can compute Com(x +y)
easily. From Com(x) and Com(y), we can compute Com(zy) if the computa-
tional Diffie-Hellman problem is easy. Finally, from Com(x) we can compute
Com(1/z) using the previous questions. So, we can evaluate any rational func-

tion.

2 On the Necessary Number of Samples to Distinguish a Biased
Coin

We are given a source of independent random bits following one given distribution. We
want to distinguish a given distribution from the uniform one. The goal of this exercise is
to prove that if ¢ is the statistical distance between the two distributions, then £72 is a
necessary and sufficient order of magnitude of number of samples which is needed to reach
an advantage of 3 or higher.

Given two random variables X and Y with the same support Z, we define

L(X,Y) =) |Pr[X = 2] - Pr[Y = Z]|

zEZ

Pr| X =2
D(X|Y) = ZPr =z logQP[[Y—
zEZ

In what follows, some questions are more related to calculus than cryptography. Their
results are necessary for the exercise but left as “bonus questions”.

Q.1 Let p = %(1 + ¢) for some ¢ € [—1,+1] and the X;’s be independent boolean random
variables with expected value p. Let the Y;’s be independent uniformly distributed
boolean random variables. Given a number of samples n, we want to distinguish X =
(X1,...,X,) from Y = (Y7,...,Y,). We assume that the value of € is known.

Q.1la Given a threshold A, we propose the distinguisher
1: get the samples zq,..., 2,
2: compute s = 21 4+ -+ + 2,
3. if % >)\ then
4: return 1
5: else

6 return 0

7. end if

Show that for some value A* (give the formula) of A, this distinguisher is optimal

among those using n samples.

The optimal distinguisher answers 1 if and only if the likelihood ratio is greater
than 1. That it, p*(1 — p)"~* > 27" where s = z1 + - - - + z,. This is equivalent

to (%p) > (2(1—p))", de to

So we have

Q.1b (Bonus question) Show that A* is close to £ + £ when |e| is small.

HINT: for € close to 0, In(1+6) =6 — % + 0(6?).

Forp= %(1 +¢) with € small, we have

In(l—¢) _ z—:+§ e+

IniE T In(1+2+22) " 2

vl
Q

N[—

A= —

IS

So, the optimal threshold is close to % + 5.

Q.1c For n = 12¢72, show that the advantage of the above distinguisher for A = % + = is

1
greater than 3.

HINT: if Z,,...,Z, are i.i.d. boolean random variables of expected value pu, the
Chernoff-Hoeffding bound says that Pr[Z; + -+ Z, < n(u —t)] < e 2",

We can build the following distinguisher:

1: get n samples 21, ..., 2z,

2: af 2t s closer to p than to L then

3 return 1

4: else

5: return 0

6: end if

We assume w.l.o.g. that p > % When we sample z; using X, the probability to
give a wrong answer is the Type 1 error o = Pr[a=tan < p — &1 Using the

n52
Chernoff-Hoeffding lemma, we have o < e~ s . When we sample z; using Y,
the probability to giwe a wrong answer is the Type 2 error f = Pr[ad=tz >
n52
% + £]. Using the Chernoff-Hoeffding lemma,Qwe have B < e s . So, the

£

advantage is Adv = 1 —a — 3 > 1 —2e s . For n = 12¢72, we obtain
3
Adv=1—a—(>1—2e2 soAde%.

The goal of the next questions is to show that for n < £72, the best advantage is
negligible.

Q.2 If X; and X, are independent and Y] and Y3 are independent, for X = (X7, X5) and
Y = (Y1,Y3), show that D(X[]Y) = D(Xy[|Y1) 4+ D(X,|Y2).

Thanks to the independence hypothesis, we have

Pl"[Xl = Zl,XQ = ZQ]
PI‘[Yi = Zlayé - 22]

DX[[Y) =) Pr[X; =z, X, = 2]log,

21,22
Pr[X; = 2] Pr[X; = 2]
S P = 5., = wllom gt~ Gt
Pr[X; = z]
=D PrlXi =21, X5 = z]logy 5
3 P = X = o, 2
Pr[Xy = 2]
PriX; = 21, Xy = »|logy ——F——
+§;2 r[X1 = 21, X2 = 2] log, Pr[Y, = 2]

PI'[Xl = 21] PI‘[XQ = 212]
= Pri Xy = z|logy —— Pr| X5 = z|logy ———F
Z r[X; = 2] log, Pr[Y; = 21| —I—ZZ r[Xy = 25] log, Pr[Ys = 2

21

= D(X1||V1) + D(X5]|Y3)

Q.3 Given two random boolean variables X’ and Y’, show that LX) < D(X'||Y").
2In2

HINT: express g(t) = (2In2) - D(X'||Y’) — L(X’,Y”)? in terms of ¢t = Pr[X’ = 1] then
derivate ¢(t) to study the variations of this function.

We have

t 1—1
g(t) = (2In2)-D(X'||]Y') - L(X',Y')* = 2t lnt—+2(1 —t)In - —4(t —tg)?
0 — o

with to = E(Y'). We have

t 1—t
") =2In— — 21
q'(t) n R

—8(t —to)

and
=242 _g—_2 __g>y
g t 1t t1—t -

since t(1—t) < 1. So, ¢’ is an increasing function such that g'(ty) = 0. Hence, g
decreases for t <ty then increases for t > ty. Besides, g(ty) = 0. So, g(t) > 0.

Q.4 (Bonus question) Let p = 1(1+ ¢) for some ¢ € [—1,+1] and X; be a boolean random
variable with expected value p. Let Y; be a uniformly distributed boolean random
variable. Show that D(X1[V1) < grsra—sy-

HINT: the Taylor-Lagrange Theorem states that there exists some ¢y between t; and ¢

such that g(t) = g(to) + g'(to)(t — to) + 59" (t2)(t — t0)*.

With previous notations, we have t = p and ty = % Furthermore, L(X4,Y1) =
| so g(t) = (2In2) - D(X||Y;) — 2.

We have g(3) = ¢'(3) = 0. Using the Taylor-Lagrange formula to the order 1,
there must exist ty between p and L such that g(t) = 1¢"(t2)(¢t —)2 So,

MXMU—9®+¥_%¢%W—9“f?_ e’
A= ome 21n 2 T (2In2) - 4t5(1 — 1)

We now use 4to(1 — to) > 4t1(1 —t1) > 4p(1 — p) = 1 — &% to obtain

82

(2In2)- (1 — &)

D(X1||Y1) <

Q.5 The aim of the next sub-questions is to show that for all function f, D(f(X)|f(Y)) <
D(X|Y).
Q.5a Show D(g(X)|lg(Y)) = D(X]]Y) for all 1-to-1 mapping g.

If g is 1-to-1, we have

_Np 1o, DHe(X) = 2]
DlgX)l)) = 32 PrigX) = 1w, 55—

B B Pr[X = 2]

— ;Pr[X = 2| log, Py = 2/

= D(X|Y)

with 2’ = g7 1(2).

Q.5b We say that m is a merging function if every input = except one is a fixed point
of m, i.e. m(z) = x. Show that an arbitrary f can be written as a composition
f =gom,o---0om; of merging functions m; and a 1-to-1 function g, for some
integer n.
HINT: make a proof by induction based on the number of collisions.

We show by induction on the number of collisions of f, we can always write
f=gomyo---0omy where each m; is a merging function and g is 1-to-1.
This is clear when f has no collision since it already 1-to-1.

Neat, we assume that f is not 1-to-1. We take a collision f(a) = f(b) with
a # b, define my(z) = x for all x except x = b and my(b) = a, then define f’
such that f = f'omy and f'(b) set to some unreached value. We can see that
f" has less collisions and apply the induction to write f' = gom,o---0omy.
So, f =gomyo---0omy.

Q.5¢ (Bonus question) Show that for all positive «, 5, ’/, 8’ real numbers,

a+
/+/8/_

< aln ——i—ﬁl s

(+ B)In %

Deduce that D(m;(X)||m;(Y)) < D(X||Y) for all merging functions m; (as defined
in Q.5b).

HINT: use the convexity of x — x Inz on the two points . and g and their weighted

a-+p3
al_‘_/B/ .

average

We notice that @ : x — xInx is a convex function. Indeed, its second derivative
is ¢"(x) = L which is positive for x > 0. Then,

(a+p)m 20 =<o/+5’)so(o‘+5)

o + 3 o+ p
/ / o @ 6, b
< (« +5)(/+5/¢(J)+O/+ﬁ’gp(y>)
_aln—-i-ﬁlng

by using the convexity of .
Here is another solution: let

a+f B
A:(a—l—ﬁ)lna,_'_B,— E_ﬁlnﬁ
We study A for o and ' non-negative of constant sum. If one of them van-
ishes, then A = —oo. An optimum is reached when % — gﬁ = 0, which s
equivalent to = — B —0. In that case, we have A =0. So, A <0.
Then, we take a mergmg functzon m; for which mz(a) = mz(b) a. We let
a=Pr[X =a], f=Pr[X =0b], o =Pr]Y =al], f =Pr[Y =0b]. We have
atf o B
D(m;(X)[|m;(Y)) = D(X|]Y) = (a+) log, T alogy — — Blog, 7 <0

So, we have D(m;(X)||m;(Y)) < D(X|Y).

Q.5d Show that D(f(X)|f(Y)) < D(X]]Y) for all functions f.

We write f = gom, o---0my where g is 1-to-1 and each m; is a merging
function. We have

D (X)[f(¥))

D((g omy o ---my)(X)[[(g omy 0---mi)(Y))

< D((my 0 -+ -my)(X)|(mn 0 -ma)(Y))
gD<<mn_1o~-m1><X)||<mn po-m)(Y))
<

< D(ma(X)|lm(Y))

< D(X|Y)

Q.6 Show that the best advantage Adv to distinguish the boolean random variables X; and
Y;, for E(X;) =p=3(1+¢) and E(Y;) = 1 satisfies Adv < 1 x
le] < 3, deduce that for n < e72, the best advantage is negligible.
HINT: define f the function mapping the vector of n sample bits to the outcome of the
distinguisher. Given X’ = f(Xy,...,X,) and Y' = f(Y1,...,Y,) for some independent

uniformly distributed bits Y7, ..., Y}, express the advantage in terms of L(X’, Y’) and
bound it in terms of D(X'||Y”").

171—6522 . Assuming that

We know that Adv is the statistical distance. So, Adv = $L(X',Y"). We fol-
low the hint and have Adv < 1./(2In2)- D(X'||Y") due to Q.3. Then, we
apply Q.5 and obtain Adv < £,/(2In2) - D(X|Y) for X = (Xi,...,X,) and
Y = (Yi,...,Y,). With Q.2, we have Adv < £/n(2In2) - D(X;[|Y1). Finally,
we apply Q.4 and obtain the result.

For |e] < %, this shows that Adv < \/Lgx/n_s2 Clearly, for n < 72, we obtain
that the best advantage Adv is negligible.

