
Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

28.4.2015

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Blind Computing with a DH Oracle

The goal of this exercise is to look at what happens when the discrete logarithm problem
is hard but the Diffie-Hellman problem is easy. Let g be an element of a group of prime
order q. Computing the discrete logarithm in the group generated by g is assumed to be
hard. We assume that we have an oracle function DH(X, Y) such that when queried with
X = gx and Y = gy for integers x and y, it returns DH(gx, gy) = gxy with one unit of time
complexity.

In this exercise we construct series of algorithms using the oracle DH. These algo-
rithms also know g and q. They can perform a group multiplication and a group inversion
within one unit of time complexity. In each question of this exercise except the last one,
we define a function by a property based on values which are not always computable.
For instance, a blind multiplication defined by f0(g

x, gy) = gxy is implemented by the
algorithm

f0(X, Y):
1: Z ← DH(X, Y)
2: return Z

without being able to compute the logarithms x or y of X and Y .
For each of these questions, define an efficient algorithm to implement the computation

of the function and give its complexity. When studying the complexity, separate the num-
ber of queries, the number of group multiplications/inversions, and the usual asymptotic
complexity of other operations.

Q.1 (blind addition) f1(g
x, gy) = gx+y.

f1(X,Y):
1: Z ← X × Y
2: return Z

The complexity is of 1 group multiplication.

Q.2 (blind scalar multiplication) f2(a, g
x) = gax when a is an integer (positive or negative).

We note that gax = Xa. So, we just apply the square-and-multiply algorithm
to compute Xa.

f2(a,X):
1: if a = 0 return 1
2: write |a| in binary |a| =

∑ℓ−1
i=0 ai2

i with ai ∈ {0, 1} and aℓ−1 = 1.
3: Z ← X
4: for i = ℓ− 2 down to 0 do
5: Z ← Z × Z
6: if ai = 1 do Z ← Z ×X
7: end for
8: if a < 0 do Z ← 1/Z
9: return Z

We have ℓ = ⌊log2 |a|⌋+1. The complexity is of up to 2ℓ− 2 group multiplica-
tions, up to 1 inversion, and O(ℓ) other operations.

Q.3 (blind power) f3(e, g
x) = gx

e
when e is a positive integer.

We apply again the square-and-multiply algorithm, but with the DH oracle for
the multiplications.

f3(e,X):
1: if a = 0 return 1
2: write e in binary e =

∑ℓ−1
i=0 ei2

i with ei ∈ {0, 1} and eℓ−1 = 1.
3: Z ← X
4: for i = ℓ− 2 down to 0 do
5: Z ← DH(Z,Z)
6: if ei = 1 do Z ← DH(Z,X)
7: end for
8: return Z

We have ℓ = ⌊log2 e⌋ + 1. The complexity is of up to 2ℓ − 2 DH oracle calls
and O(ℓ) other operations.

Q.4 (blind sparse polynomial) f4(a1, e1, . . . , an, en, g
x) = g

∑n
i=1 aix

ei when the ei’s are positive
integers and the ai’s are nonzero integers.

Using the previous questions, we just compute all gx
ei , raise them to the ai

powers, and multiply them all.

f4(a1, e1, . . . , an, en, X):
1: Z ← 1
2: for i = 1 to n do
3: compute T = f3(ei, X)
4: compute T = f2(ai, T)
5: compute Z = Z × T
6: end for
7: return Z

The complexity is bounded by n+2
∑n

i=1 log2 |ai| multiplications, n inversions,
2
∑n

i=1 log2 ei DH oracle calls, and O(n+
∑n

i=1 log2(|ai|ei)) other operations.

Q.5 (blind inversion) f5(g
x) = g

1
x
mod q when gx ̸= 1.

We observe that 1
x
≡ xq−2 (mod q). So, we just compute gx

e
for e = q −

2.

f5(X):
1: Z ← f3(q − 2, X)
2: return Z

The complexity is bounded by 2 log2 q oracle calls and O(log2 q) other opera-
tions.

Q.6 (blind e-th root when e is invertible) f6(e, g
ye) = gy when e is a positive integer which

is coprime with q − 1.

We observe that if ye ≡ x (mod q), then

y ≡ x
1
e
mod (q−1) (mod q)

So, we can just compute 1
e
mod (q − 1) using the extended Euclid Al-

gorithm in complexity quadratic in log q then use the previous algo-
rithms.

f6(e,X):
1: compute t = 1/e mod (q − 1) using the extended Euclid Algorithm
2: Z ← f3(t,X)
3: return Z

The complexity is bounded by 2 log2 q oracle calls plus O((log q)2) other oper-
ations.

Q.7 (blind square root) f7(g
y2) ∈ {gy, g−y}. (For simplicity, we assume q mod 4 = 3.)

We observe that x
q+1
4 mod q is a square root of x whenever such square

root exists. So, we use the previous algorithms to compute gx
e
for e =

q+1
4
. Note that the two square roots are then xe and −xe, so (y2)e ∈

{y,−y}.
f7(X):
1: compute e = q+1

4

2: Z ← f3(e,X)
3: return Z

The complexity is bounded by 2 log2 q oracle calls and O(log q) other operations.

Q.8 With the same notations and assumptions, construct a commitment scheme which is
deterministic computationally hiding and perfectly binding on Zq, with the property
that given a rational function f(x1, . . . , xn) and some commitments on x1, ..., and xn,
it is easy to deduce a commitment to f(x1, . . . , xn) without knowing x1, . . . , xn.

The mapping Com : x 7→ gx is such a commitment!
Indeed, it is deterministic. If the discrete logarithm is hard, it is determinis-
tic computationally hiding. Since it is injective on Zq, it is perfectly binding
(there is no collision). From Com(x) and Com(y), we can compute Com(x+ y)
easily. From Com(x) and Com(y), we can compute Com(xy) if the computa-
tional Diffie-Hellman problem is easy. Finally, from Com(x) we can compute
Com(1/x) using the previous questions. So, we can evaluate any rational func-
tion.

2 On the Necessary Number of Samples to Distinguish a Biased
Coin

We are given a source of independent random bits following one given distribution. We
want to distinguish a given distribution from the uniform one. The goal of this exercise is
to prove that if ε is the statistical distance between the two distributions, then ε−2 is a
necessary and sufficient order of magnitude of number of samples which is needed to reach
an advantage of 1

2
or higher.

Given two random variables X and Y with the same support Z, we define

L(X, Y) =
∑
z∈Z

|Pr[X = z]− Pr[Y = z]|

D(X∥Y) =
∑
z∈Z

Pr[X = z] log2
Pr[X = z]

Pr[Y = z]

In what follows, some questions are more related to calculus than cryptography. Their
results are necessary for the exercise but left as “bonus questions”.

Q.1 Let p = 1
2
(1 + ε) for some ε ∈ [−1,+1] and the Xi’s be independent boolean random

variables with expected value p. Let the Yi’s be independent uniformly distributed
boolean random variables. Given a number of samples n, we want to distinguish X =
(X1, . . . , Xn) from Y = (Y1, . . . , Yn). We assume that the value of ε is known.

Q.1a Given a threshold λ, we propose the distinguisher

1: get the samples z1, . . . , zn
2: compute s = z1 + · · ·+ zn
3: if s

n
≥ λ then

4: return 1
5: else
6: return 0
7: end if

Show that for some value λ∗ (give the formula) of λ, this distinguisher is optimal
among those using n samples.

The optimal distinguisher answers 1 if and only if the likelihood ratio is greater
than 1. That it, ps(1− p)n−s ≥ 2−n where s = z1 + · · ·+ zn. This is equivalent

to
(

p
1−p

)s

≥ (2(1− p))−n, i.e. to

s

n
≥ − ln(2(1− p))

ln
(

p
1−p

)
So we have

λ∗ = − ln(2(1− p))

ln
(

p
1−p

) = − ln(1− ε)

ln 1+ε
1−ε

Q.1b (Bonus question) Show that λ∗ is close to 1
2
+ ε

4
when |ε| is small.

HINT: for θ close to 0, ln(1 + θ) = θ − θ2

2
+ o(θ2).

For p = 1
2
(1 + ε) with ε small, we have

λ∗ = − ln(1− ε)

ln 1+ε
1−ε

≈
ε+ ε2

2

ln (1 + 2ε+ 2ε2)
≈

ε+ ε2

2

2ε
≈ 1

2
+

ε

4

So, the optimal threshold is close to 1
2
+ ε

4
.

Q.1c For n = 12ε−2, show that the advantage of the above distinguisher for λ = 1
2
+ ε

4
is

greater than 1
2
.

HINT: if Z1, . . . , Zn are i.i.d. boolean random variables of expected value µ, the
Chernoff-Hoeffding bound says that Pr[Z1 + · · ·+ Zn < n(µ− t)] ≤ e−2nt2 .

We can build the following distinguisher:

1: get n samples z1, . . . , zn
2: if z1+···+zn

n
is closer to p than to 1

2
then

3: return 1
4: else
5: return 0
6: end if

We assume w.l.o.g. that p > 1
2
. When we sample zi using X, the probability to

give a wrong answer is the Type 1 error α = Pr[z1+···+zn
n

< p − ε
4
]. Using the

Chernoff-Hoeffding lemma, we have α ≤ e−
nε2

8 . When we sample zi using Y ,
the probability to give a wrong answer is the Type 2 error β = Pr[z1+···+zn

n
>

1
2
+ ε

4
]. Using the Chernoff-Hoeffding lemma, we have β ≤ e−

nε2

8 . So, the

advantage is Adv = 1 − α − β ≥ 1 − 2e−
nε2

8 . For n = 12ε−2, we obtain
Adv = 1− α− β ≥ 1− 2e−

3
2 so Adv ≥ 1

2
.

The goal of the next questions is to show that for n ≪ ε−2, the best advantage is
negligible.

Q.2 If X1 and X2 are independent and Y1 and Y2 are independent, for X = (X1, X2) and
Y = (Y1, Y2), show that D(X∥Y) = D(X1∥Y1) +D(X2∥Y2).

Thanks to the independence hypothesis, we have

D(X∥Y) =
∑
z1,z2

Pr[X1 = z1, X2 = z2] log2
Pr[X1 = z1, X2 = z2]

Pr[Y1 = z1, Y2 = z2]

=
∑
z1,z2

Pr[X1 = z1, X2 = z2] log2
Pr[X1 = z1] Pr[X2 = z2]

Pr[Y1 = z1] Pr[Y2 = z2]

=
∑
z1,z2

Pr[X1 = z1, X2 = z2] log2
Pr[X1 = z1]

Pr[Y1 = z1]

+
∑
z1,z2

Pr[X1 = z1, X2 = z2] log2
Pr[X2 = z2]

Pr[Y2 = z2]

=
∑
z1

Pr[X1 = z1] log2
Pr[X1 = z1]

Pr[Y1 = z1]
+
∑
z2

Pr[X2 = z2] log2
Pr[X2 = z2]

Pr[Y2 = z2]

=D(X1∥Y1) +D(X2∥Y2)

Q.3 Given two random boolean variables X ′ and Y ′, show that L(X′,Y ′)2

2 ln 2
≤ D(X ′∥Y ′).

HINT: express g(t) = (2 ln 2) ·D(X ′∥Y ′)− L(X ′, Y ′)2 in terms of t = Pr[X ′ = 1] then
derivate g(t) to study the variations of this function.

We have

g(t) = (2 ln 2) ·D(X ′∥Y ′)−L(X ′, Y ′)2 = 2t ln
t

t0
+2(1− t) ln

1− t

1− t0
−4(t− t0)

2

with t0 = E(Y ′). We have

g′(t) = 2 ln
t

t0
− 2 ln

1− t

1− t0
− 8(t− t0)

and

g′′(t) =
2

t
+

2

1− t
− 8 =

2

t(1− t)
− 8 ≥ 0

since t(1−t) ≤ 1
4
. So, g′ is an increasing function such that g′(t0) = 0. Hence, g

decreases for t < t0 then increases for t > t0. Besides, g(t0) = 0. So, g(t) ≥ 0.

Q.4 (Bonus question) Let p = 1
2
(1 + ε) for some ε ∈ [−1,+1] and X1 be a boolean random

variable with expected value p. Let Y1 be a uniformly distributed boolean random
variable. Show that D(X1∥Y1) ≤ ε2

(2 ln 2)·(1−ε2)
.

HINT: the Taylor-Lagrange Theorem states that there exists some t2 between t0 and t
such that g(t) = g(t0) + g′(t0)(t− t0) +

1
2
g′′(t2)(t− t0)

2.

With previous notations, we have t = p and t0 =
1
2
. Furthermore, L(X1, Y1) =

|ε| so g(t) = (2 ln 2) ·D(X1∥Y1)− ε2.
We have g(1

2
) = g′(1

2
) = 0. Using the Taylor-Lagrange formula to the order 1,

there must exist t2 between p and 1
2
such that g(t) = 1

2
g′′(t2)(t− 1

2
)2. So,

D(X1∥Y1) =
g(t) + ε2

2 ln 2
=

1
2
g′′(t2)(t− 1

2
)2 + ε2

2 ln 2
=

ε2

(2 ln 2) · 4t2(1− t2)

We now use 4t2(1− t2) ≥ 4t1(1− t1) ≥ 4p(1− p) = 1− ε2 to obtain

D(X1∥Y1) ≤
ε2

(2 ln 2) · (1− ε2)

Q.5 The aim of the next sub-questions is to show that for all function f , D(f(X)∥f(Y)) ≤
D(X∥Y).

Q.5a Show D(g(X)∥g(Y)) = D(X∥Y) for all 1-to-1 mapping g.

If g is 1-to-1, we have

D(g(X)∥g(Y)) =
∑
z

Pr[g(X) = z] log2
Pr[g(X) = z]

Pr[g(Y) = z]

=
∑
z′

Pr[X = z′] log2
Pr[X = z′]

Pr[Y = z′]

=D(X∥Y)

with z′ = g−1(z).

Q.5b We say that m is a merging function if every input x except one is a fixed point
of m, i.e. m(x) = x. Show that an arbitrary f can be written as a composition
f = g ◦ mn ◦ · · · ◦ m1 of merging functions mi and a 1-to-1 function g, for some
integer n.

HINT: make a proof by induction based on the number of collisions.

We show by induction on the number of collisions of f , we can always write
f = g ◦mn ◦ · · · ◦m1 where each mi is a merging function and g is 1-to-1.
This is clear when f has no collision since it already 1-to-1.
Next, we assume that f is not 1-to-1. We take a collision f(a) = f(b) with
a ̸= b, define m1(x) = x for all x except x = b and m1(b) = a, then define f ′

such that f = f ′ ◦m1 and f ′(b) set to some unreached value. We can see that
f ′ has less collisions and apply the induction to write f ′ = g ◦mn ◦ · · · ◦m2.
So, f = g ◦mn ◦ · · · ◦m1.

Q.5c (Bonus question) Show that for all positive α, β, α′, β′ real numbers,

(α + β) ln
α + β

α′ + β′ ≤ α ln
α

α′ + β ln
β

β′

Deduce that D(mi(X)∥mi(Y)) ≤ D(X∥Y) for all merging functions mi (as defined
in Q.5b).

HINT: use the convexity of x 7→ x lnx on the two points α
α′ and

β
β′ and their weighted

average α+β
α′+β′ .

We notice that φ : x 7→ x lnx is a convex function. Indeed, its second derivative
is φ′′(x) = 1

x
which is positive for x > 0. Then,

(α+ β) ln
α + β

α′ + β′ = (α′ + β′)φ

(
α+ β

α′ + β′

)
≤ (α′ + β′)

(
α′

α′ + β′φ
(α

α′

)
+

β′

α′ + β′φ

(
β

β′

))
= α ln

α

α′ + β ln
β

β′

by using the convexity of φ.
Here is another solution: let

∆ = (α + β) ln
α + β

α′ + β′ − α ln
α

α′ − β ln
β

β′

We study ∆ for α′ and β′ non-negative of constant sum. If one of them van-
ishes, then ∆ = −∞. An optimum is reached when ∂∆

∂α′ − ∂∆
∂β′ = 0, which is

equivalent to α
α′ − β

β′ = 0. In that case, we have ∆ = 0. So, ∆ ≤ 0.

Then, we take a merging function mi for which mi(a) = mi(b) = a. We let
α = Pr[X = a], β = Pr[X = b], α′ = Pr[Y = a], β′ = Pr[Y = b]. We have

D(mi(X)∥mi(Y))−D(X∥Y) = (α+β) log2
α + β

α′ + β′ −α log2
α

α′ −β log2
β

β′ ≤ 0

So, we have D(mi(X)∥mi(Y)) ≤ D(X∥Y).

Q.5d Show that D(f(X)∥f(Y)) ≤ D(X∥Y) for all functions f .

We write f = g ◦ mn ◦ · · · ◦ m1 where g is 1-to-1 and each mi is a merging
function. We have

D(f(X)∥f(Y)) =D((g ◦mn ◦ · · ·m1)(X)∥(g ◦mn ◦ · · ·m1)(Y))

≤D((mn ◦ · · ·m1)(X)∥(mn ◦ · · ·m1)(Y))

≤D((mn−1 ◦ · · ·m1)(X)∥(mn−1 ◦ · · ·m1)(Y))

≤ · · ·
≤D(m1(X)∥m1(Y))

≤D(X∥Y)

Q.6 Show that the best advantage Adv to distinguish the boolean random variables Xi and

Yi, for E(Xi) = p = 1
2
(1 + ε) and E(Yi) =

1
2
satisfies Adv ≤ 1

2
×
√

nε2

1−ε2
. Assuming that

|ε| ≤ 1
2
, deduce that for n≪ ε−2, the best advantage is negligible.

HINT: define f the function mapping the vector of n sample bits to the outcome of the
distinguisher. Given X ′ = f(X1, . . . , Xn) and Y ′ = f(Y1, . . . , Yn) for some independent
uniformly distributed bits Y1, . . . , Yn, express the advantage in terms of L(X ′, Y ′) and
bound it in terms of D(X ′∥Y ′).

We know that Adv is the statistical distance. So, Adv = 1
2
L(X ′, Y ′). We fol-

low the hint and have Adv ≤ 1
2

√
(2 ln 2) ·D(X ′∥Y ′) due to Q.3. Then, we

apply Q.5 and obtain Adv ≤ 1
2

√
(2 ln 2) ·D(X∥Y) for X = (X1, . . . , Xn) and

Y = (Y1, . . . , Yn). With Q.2, we have Adv ≤ 1
2

√
n(2 ln 2) ·D(X1∥Y1). Finally,

we apply Q.4 and obtain the result.
For |ε| ≤ 1

2
, this shows that Adv ≤ 1√

3

√
nε2. Clearly, for n ≪ ε−2, we obtain

that the best advantage Adv is negligible.

