Advanced Cryptography - Final Exam

Serge Vaudenay

21.6.2016

- duration: 3h
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- readability and style of writing will be part of the grade

$1 \quad \Sigma$ Protocol in an Group of Exponent 2

Given an integer s, we consider an Abelian group G (with multiplicative notations) such that for all $x \in G$, we have $x^{2}=1$. We assume that there are deterministic polynomial time algorithms to compute the order n of G, to multiply and to compare two group elements. More precisely, given x and y we can compute $x y$ and say whether $x=y$. For $x=\left(x_{1}, \ldots, x_{m}, y\right) \in G^{m+1}$ and $w=\left(w_{1}, \ldots, w_{m}\right) \in\{0,1\}^{m}$, we consider the following relation:

$$
R(x ; w) \Longleftrightarrow y=x_{1}^{w_{1}} \cdots x_{m}^{w_{m}}
$$

We consider the following protocol:

Prover		Verifier
w	x	

$$
\begin{aligned}
& \text { pick } r=\left(r_{1}, \ldots, r_{m}\right) \in_{U}\{0,1\}^{m} \\
& a=x_{1}^{r_{1}} \cdots x_{m}^{r_{m}} \xrightarrow{a} \\
& \stackrel{e}{\longleftrightarrow} \text { pick } e \in_{U}\{0,1\} \\
& z=r \oplus e w \xrightarrow{z} \text { check } x_{1}^{z_{1}} \cdots x_{m}^{z_{m}}=a y^{e}
\end{aligned}
$$

where \oplus denotes the XOR operation (exclusive OR) between two bits and ϵ_{U} denotes a random selection with uniform distribution and fresh coins.
Q. 1 Following the terminology of Σ protocols, show that the above protocol has special soundness.
Q. 2 Following the terminology of Σ protocols, show that the above protocol is special HVZK (special honest verifier zero-knowledge).
Q. 3 Show that the proposed protocol is a Σ protocol.

2 On Generator Generation in Diffie-Hellman Problems

In the Computational Diffie-Hellman (CDH) Problem and the Decisional Diffie-Hellman (DDH) Problem, there is a security parameter (integer) s as input to a probabilistic polynomial-time (PPT) algorithm $\operatorname{Gen}\left(1^{s}\right) \rightarrow(q$, parms, $g)$ to generate a prime number q together with an element g and some parameters params. The values q and params define a group $G=(q$, params) of order q in which g is a generator. We denote $G=\langle g\rangle$ and $x \in G$ to mean that g generates G and x belongs to G. We assume multiplicative notations in the group. We assume we have two deterministic polynomial-time algorithms MUL and EQ such that for all $x, y \in G$, we have $\operatorname{MUL}(G, x, y)=x y$ and $\mathrm{EQ}(G, x, y)=1_{x=y}$.
Q. 1 Show that we can design deterministic polynomial-time algorithms UN, INV, and POW such that for all $x \in G$ and $e \in \mathbf{Z}$, we have $\operatorname{UN}(G, x)=1, \operatorname{INV}(G, x)=x^{-1}$, and $\operatorname{POW}(G, x, e)=x^{e}$.
CAUTION: be careful with the $e=0$ and $e<0$ cases.

In this exercise, we look at the influence on the g generation by Gen in the Gen-CDH and Gen-DDH problems. We assume a first PPT algorithm Setup $\left(1^{s}\right) \rightarrow$ (q, parms) to generate the group $G=(q$, parms) and we assume that from G we can extract a generator $g=$ Generator (G) using a deterministic polynomial-time algorithm Generator. We define two generating algorithms.
GenFixed $\left(1^{s} ; \rho\right)$:
1: $\operatorname{run} \operatorname{Setup}\left(1^{s} ; \rho\right) \rightarrow G=(q$, parms $)$
2: run $g=\operatorname{Generator}(G)$
3: output (q, parms, g)
We call GenFixed the setup with fixed generator g.
GenRand $\left(1^{s} ; \rho\right)$:
1: split ρ into two independent sequences ρ_{1} and ρ_{2}
2: run $\operatorname{Setup}\left(1^{s} ; \rho_{1}\right) \rightarrow G=(q$, parms $)$
3: run $g=\operatorname{Generator}(G)$
4: generate $a \in \mathbf{Z}_{q}^{*}$ with uniform distribution from ρ_{2}
5: set $h=\operatorname{POW}(G, g, a)$
6: output (q, parms, h)
We call GenRand the setup with random generator h.
The DDH problem specifies two distributions with parameter s :

Source $S_{0}(G e n)$:
1: pick a large enough sequence of independent fair coin flips ρ
run $\operatorname{Gen}\left(1^{s} ; \rho\right) \rightarrow(q$, parms,$g)$
: pick $x, y \in \mathbf{Z}_{q}$ with uniform distribution (x, y, and ρ are independent)
set $X=g^{x}, Y=g^{y}, Z=g^{x y}$
output (q, parms, g, X, Y, Z)

Source $S_{1}($ Gen):
1: pick a large enough sequence of independent fair coin flips ρ
run $\operatorname{Gen}\left(1^{s} ; \rho\right) \rightarrow(q$, parms,$g)$
pick $x, y, z \in \mathbf{Z}_{q}$ with uniform distribution $(x, y, z$, and ρ are independent)
: set $X=g^{x}, Y=g^{y}, Z=g^{z}$
: output (q, parms, g, X, Y, Z)

The Gen-DDH problem consists of distinguishing $S_{0}(G e n)$ and $S_{1}(G e n)$. We stress that the DDH problem is relative to Gen; this is why we call it the Gen-DDH problem. We define the advantage

$$
\operatorname{Adv}{ }^{\text {Gen-DDH }}(\mathcal{A})=\operatorname{Pr}\left[\mathcal{A}\left(S_{0}(\text { Gen })\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(S_{1}(\text { Gen })\right)=1\right]
$$

The Gen-DDH is hard if and only if for all PPT distinguisher $\mathcal{A}, \operatorname{Adv}^{\operatorname{Gen}-D D H}(\mathcal{A})$ is negligible.
Q. 2 Given a GenRand-DDH distinguisher \mathcal{A}, construct a GenFixed-DDH distinguisher \mathcal{B} with the same advantage and a similar complexity.
Q. 3 Show that if the GenFixed-DDH is hard, then the GenRand-DDH problem is hard.

Unfortunately, we have no implication in the other direction for the DDH problem, but there is for the CDH problem.

The computational Diffie-Hellman (CDH) problem has instances defined by the following source:

Source $S($ Gen):

pick a large enough sequence of independent fair coin flips ρ
run $\operatorname{Gen}\left(1^{s} ; \rho\right) \rightarrow(q$, params, $g)$
pick $x, y \in \mathbf{Z}_{q}^{*}$ with uniform distribution (x, y, and ρ are independent)
set $X=g^{x}, Y=g^{y}$ \{the solution to the problem is $\left.g^{x y}\right\}$
output (q, params, g, X, Y)
Given a CDH solver \mathcal{A}, we define

$$
\operatorname{Succ}^{\operatorname{Gen}-\mathrm{CDH}}(\mathcal{A})=\operatorname{Pr}\left[\mathcal{A}(S(\mathrm{Gen}))=g^{x y}\right]
$$

The Gen-CDH is hard if and only if for all PPT solver \mathcal{A}, $\operatorname{Succ}^{\mathrm{Gen}-\operatorname{CDH}}(\mathcal{A})$ is negligible.
Q. 4 Given a GenRand-CDH solver \mathcal{A}, construct a GenFixed-CDH solver \mathcal{B} with similar complexity and

$$
\operatorname{Succ}^{\text {GenRand-CDH }}(\mathcal{A})=\text { Succ }^{\text {GenFixed-CDH }}(\mathcal{B})
$$

Q. 5 Given a GenFixed-CDH solver \mathcal{A}, we denote

$$
\varepsilon_{\rho}=\operatorname{Pr}\left[\mathcal{A}(S(\text { GenFixed }))=g^{x y} \mid \rho\right]
$$

the probability of success when ρ in S is fixed. So, GenFixed always returns the same group and generator (due to ρ being fixed). Only x, y, and possible coins used by \mathcal{A} remain random.
Given a GenFixed-CDH solver \mathcal{A}, show that we can construct an algorithm Mu such that for any integer x and y (i.e., not only for random x and y) and any ρ, we have

$$
\operatorname{Mu}\left(q, \text { params }, g, g^{x}, g^{y}\right)=g^{x y}
$$

for $\operatorname{GenFixed}\left(1^{s} ; \rho\right) \rightarrow(q$, params, $g)$ with probability at least ε_{ρ} over the distribution of x, y, and possible coins by \mathcal{A}.
Q. 6 Show that we can construct an algorithm In such that for any integer x and any ρ, we have

$$
\ln \left(q, \text { params, } g, g^{x}\right)=g^{\frac{1}{x}}
$$

for $\operatorname{GenFixed}\left(1^{s} ; \rho\right) \rightarrow(q$, params, $g)$ with probability at least ε_{ρ}^{w} for $w=\mathcal{O}(\log q)$.
Q. 7 Given a GenFixed-CDH solver \mathcal{A}, construct a GenRand-CDH solver \mathcal{B} with similar complexity and

$$
\operatorname{Succ}^{\text {GenRand-CDH }}(\mathcal{B}) \geq\left(\operatorname{Succ}^{\text {GenFixed-CDH }}(\mathcal{A})\right)^{\mathcal{O}(\log q)}
$$

Q. 8 Show that GenFixed-CDH is hard if and only if GenRand-CDH is hard.

3 Equivalent PRF Notions

We consider a function family f_{s} which depends on a security parameter s. Given s, the function f_{s} takes a key $k \in \mathcal{K}_{s}$ and an input $x \in \mathcal{X}_{s}$. It produces an output $y=f_{s}(k, x) \in$ \mathcal{Y}_{s}. To have lighter notations, from now on the subscript s is omitted. We further write the input k of f as a subscript to write $f_{k}(x)=f(k, x)$. We say that the function family f is a pseudorandom function (PRF) if it can be computed in polynomial time (in terms of s) and if for every probabilistic polynomial-time (PPT) algorithm \mathcal{A}, the function $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{PRF}}$ (this is a function in terms of s) is a negligible function where

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{PRF}}=\operatorname{Pr}\left[\Gamma_{0}^{\mathrm{PRF}}(\mathcal{A})=1\right]-\operatorname{Pr}\left[\Gamma_{1}^{\mathrm{PRF}}(\mathcal{A})=1\right]
$$

and $\Gamma_{b}^{\operatorname{PRF}}(\mathcal{A})$ is defined with a bit b as follows:
Game $\Gamma_{b}^{\text {PRF }}(\mathcal{A})$:
pick $s \in \mathcal{K}$ at random
set ρ to a long enough sequence of random coins
set $i=1$
$\left(q, x_{i}\right) \leftarrow \mathcal{A}(; \rho)$
while $q \neq$ final do
if $x_{i} \in\left\{x_{1}, \ldots, x_{i-1}\right\}$ then abort $\{$ it is not allowed to repeat a query $\}$
end if
if $b=0$ then set $y_{i}=f_{s}\left(x_{i}\right)$
else
set $y_{i} \in \mathcal{Y}$ at random
end if
$i \leftarrow i+1$
$\left(q, x_{i}\right) \leftarrow \mathcal{A}\left(y_{1}, \ldots, y_{i-1} ; \rho\right)$
end while
output x_{i}
Here, \mathcal{A} returns a pair (q, x). The string q is either query or final. If $q=$ query, it means that \mathcal{A} wants to query $f_{s}(x)$ and continue. If $q=$ final, it means that \mathcal{A} is done and returning a bit x as a final output.

We recall that a function $\operatorname{Adv}(s)$ is negligible is for all $c>0$, we have $\operatorname{Adv}(s)=\mathcal{O}\left(s^{-c}\right)$ when $s \rightarrow+\infty$.

In this exercise, we consider another notion defined by the following game:
Game $\Gamma_{b}^{\text {prePRF }}(\mathcal{A})$:
: pick $s \in \mathcal{K}$ at random
set ρ to a long enough sequence of random coins
set $i=1$ and unset flag
$\left(q, x_{i}\right) \leftarrow \mathcal{A}(; \rho)$
while $q \neq$ final do

```
    if \(x_{i} \in\left\{x_{1}, \ldots, x_{i-1}\right\}\) then
    abort \(\{\) it is not allowed to repeat a query \(\}\)
    end if
    if \(q=\) challenge and flag is set then
    abort \(\{\) it is not allowed to make two challenges \(\}\)
    end if
    if \(q=\) challenge then
        set flag \(\{\mathcal{A}\) is making a challenge \(\}\)
    end if
    if \(q=\) challenge and \(b=1\) then
        set \(y_{i} \in \mathcal{Y}\) at random
    else
        set \(y_{i}=f_{s}\left(x_{i}\right)\)
    end if
    \(i \leftarrow i+1\)
    \(\left(q, x_{i}\right) \leftarrow \mathcal{A}\left(y_{1}, \ldots, y_{i-1} ; \rho\right)\)
end while \(\{\) we must have \(q=\) final \(\}\)
output \(x_{i}\)
```

Essentially, \mathcal{A} always plays with f with $q=$ query and at some point uses only once a special $q=$ challenge. For this "challenge", the response which is returned to him is $f_{s}(x)$ if $b=0$ or something random if $b=1$. An equivalent way consists of saying that $\mathcal{A}^{f_{k}(\cdot)}$ works in two phases, playing with a $f_{k}(\cdots)$ oracle. In between the two phases, it makes a challenge which is answer by $f_{k}(\cdots)$ or at random.

We define

$$
\operatorname{Adv}_{\mathcal{A}}^{\text {prePRF }}=\operatorname{Pr}\left[\Gamma_{0}^{\text {prePRF }}(\mathcal{A})=1\right]-\operatorname{Pr}\left[\Gamma_{1}^{\operatorname{prePRF}}(\mathcal{A})=1\right]
$$

and we say that the function family f is a prePRF if it can be computed in polynomial time (in terms of s) and if for every PPT algorithm $\mathcal{A}, \operatorname{Adv}_{\mathcal{A}}^{\text {prePRF }}$ is negligible.

The objective of this exercise is to show that PRF and prePRF are equivalent security notions.
Q. 1 Given a prePRF adversary \mathcal{A} and a bit b, we construct a PRF adversary \mathcal{B}_{b} as follows:
$\mathcal{B}_{b}\left(y_{1}, \ldots, y_{i-1} ; \rho\right)$:
if $i=1$ then
set seq_{x} and seq_{y} to the empty sequence $\left\{\right.$ first execution of $\left.\mathcal{B}_{b}\right\}$
else
set $\operatorname{seq}_{y} \leftarrow\left(\operatorname{seq}_{y}, y_{i-1}\right)\left\{y_{i-1}\right.$ is the answer to the previous query $\}$
end if
$\operatorname{run}(q, x)=\mathcal{A}\left(\right.$ seq $\left._{y} ; \rho\right)$
if $x \in \operatorname{seq}_{x}$ then
abort $\{$ it is not allowed to repeat a query $\}$
end if
10: set $\operatorname{seq}_{x} \leftarrow\left(\operatorname{seq}_{x}, x\right)\{$ insert x in the list of queries\}

```
if \(q=\) challenge and \(b=1\) then
    set \(y \in \mathcal{Y}\) at random
    set \(\operatorname{seq}_{y} \leftarrow\left(\mathrm{seq}_{y}, y\right)\)
    \(\operatorname{run}(q, x)=\mathcal{A}\left(\right.\) seq \(\left._{y} ; \rho\right)\)
    if \(x \in \mathrm{seq}_{x}\) then
        abort \{it is not allowed to repeat a query \}
    end if
    set \(\operatorname{seq}_{x} \leftarrow\left(\operatorname{seq}_{x}, x\right)\) \{insert \(x\) in the list of queries \(\}\)
end if
output \((q, x)\)
```

So, \mathcal{B} simulates \mathcal{A} and simulates the answer to random for the $q=$ challenge and $b=1$ case.
Show that

$$
\begin{aligned}
\operatorname{Pr}\left[\Gamma_{0}^{\operatorname{prePRF}}(\mathcal{A})=1\right] & =\operatorname{Pr}\left[\Gamma_{0}^{\mathrm{PRF}}\left(\mathcal{B}_{0}\right)=1\right] \\
\operatorname{Pr}\left[\Gamma_{1}^{\operatorname{prePRF}}(\mathcal{A})=1\right] & =\operatorname{Pr}\left[\Gamma_{0}^{\operatorname{PRF}}\left(\mathcal{B}_{1}\right)=1\right] \\
\operatorname{Pr}\left[\Gamma_{1}^{\operatorname{PRF}}\left(\mathcal{B}_{0}\right)=1\right] & =\operatorname{Pr}\left[\Gamma_{1}^{\mathrm{PRF}}\left(\mathcal{B}_{1}\right)=1\right]
\end{aligned}
$$

Q. 2 Show that if f is a PRF, then f is a prePRF.
Q. 3 We define the following game:

Game $\Gamma^{j}(\mathcal{A})$:
pick $s \in \mathcal{K}$ at random
set ρ to a long enough sequence of random coins
set $i=1$
$\left(q, x_{i}\right) \leftarrow \mathcal{A}(; \rho)$
while $q \neq$ final do if $x_{i} \in\left\{x_{1}, \ldots, x_{i-1}\right\}$ then abort $\{$ it is not allowed to repeat a query $\}$ end if if $i \leq j$ then set $y_{i}=f_{s}\left(x_{i}\right)$ \{answer using f_{s} to the j first queries $\}$ else set $y_{i} \in \mathcal{Y}$ at random
end if
$i \leftarrow i+1$
$\left(q, x_{i}\right) \leftarrow \mathcal{A}\left(y_{1}, \ldots, y_{i-1} ; \rho\right)$
end while $\{$ we must have $q=$ final $\}$
output x_{i}

Show that for a PPT adversary \mathcal{A}, there exists some polynomially bounded Q such that we have

$$
\begin{aligned}
& \operatorname{Pr}\left[\Gamma^{Q}(\mathcal{A})\right.=1] \\
& \operatorname{Pr}\left[\Gamma^{0}(\mathcal{A})=1\right]=\operatorname{Pr}\left[\Gamma_{0}^{\operatorname{PRF}}(\mathcal{A})=1\right] \\
&\left.\Gamma_{1}^{\operatorname{PRF}}(\mathcal{A})=1\right]
\end{aligned}
$$

Q. 4 Given a PPT adversary \mathcal{A} and an integer j, we construct an adversary \mathcal{B}_{j} as follows:
$\mathcal{B}_{j}\left(y_{1}, \ldots, y_{i-1} ; \rho\right)$:
1: $\operatorname{run}\left(q, x_{i}\right)=\mathcal{A}\left(y_{1}, \ldots, y_{i-1} ; \rho\right)$
if $i=j$ then
set q to challenge
end if
if $i>j$ then
while $q \neq$ final and $x_{i} \notin\left\{x_{1}, \ldots, x_{i-1}\right\}$ do
set $y_{i} \in \mathcal{Y}$ at random
$i \leftarrow i+1$
$\operatorname{run}\left(q, x_{i}\right)=\mathcal{A}\left(y_{1}, \ldots, y_{i-1} ; \rho\right)$
end while
end if
output $\left(q, x_{i}\right)$
Show that

$$
\begin{aligned}
\operatorname{Pr}\left[\Gamma^{j}(\mathcal{A})=1\right] & =\operatorname{Pr}\left[\Gamma_{0}^{\operatorname{prePRF}}\left(\mathcal{B}_{j}\right)=1\right] \\
\operatorname{Pr}\left[\Gamma^{j-1}(\mathcal{A})=1\right] & =\operatorname{Pr}\left[\Gamma_{1}^{\operatorname{prePRF}}\left(\mathcal{B}_{j}\right)=1\right]
\end{aligned}
$$

Q. 5 Show that if f is a prePRF, then f is a PRF.

