Advanced Cryptography — Final Exam

Serge Vaudenay

21.6.2016

— duration: 3h

— any document allowed

— a pocket calculator is allowed

— communication devices are not allowed

— the exam invigilators will not answer any technical question during the exam
— readability and style of writing will be part of the grade

1 X Protocol in an Group of Exponent 2

Given an integer s, we consider an Abelian group G (with multiplicative notations) such
that for all # € G, we have 22 = 1. We assume that there are deterministic polynomial
time algorithms to compute the order n of G, to multiply and to compare two group
elements. More precisely, given x and y we can compute zy and say whether x = y. For
T = (r1,. ., Tm,y) € G and w = (wy,...,w,) € {0,1}™, we consider the following
relation:

Wm

R(z;w) <=y =a{" - -x)
We consider the following protocol:

Prover Verifier
w x

pick = (r1,...,7,) €y {0,1}™

CL:Q?T'--QZ';’L” _)a

+— pick e €y {0,1}

z
z =1 @ ew — check 27" - - - 27" = ay

e

where @ denotes the XOR operation (exclusive OR) between two bits and €;; denotes a
random selection with uniform distribution and fresh coins.

Q.1 Following the terminology of X' protocols, show that the above protocol has special
soundness.

Q.2 Following the terminology of 3 protocols, show that the above protocol is special HVZK
(special honest verifier zero-knowledge).

Q.3 Show that the proposed protocol is a X' protocol.

2 On Generator Generation in Diffie-Hellman Problems

In the Computational Diffie-Hellman (CDH) Problem and the Decisional Diffie-Hellman
(DDH) Problem, there is a security parameter (integer) s as input to a probabilistic
polynomial-time (PPT) algorithm Gen(1°) — (g¢,parms,g) to generate a prime number
q together with an element ¢ and some parameters params. The values ¢ and params define
a group G = (g, params) of order ¢ in which ¢ is a generator. We denote G = (g) and z € G
to mean that g generates G and x belongs to G. We assume multiplicative notations in

the group. We assume we have two deterministic polynomial-time algorithms MUL and EQ
such that for all z,y € G, we have MUL(G, z,y) = zy and EQ(G, z,y) = 1,,.

Q.1 Show that we can design deterministic polynomial-time algorithms UN, INV, and POW
such that for all x € G and e € Z, we have UN(G,z) = 1, INV(G,z) = 27!, and
POW(G, x,e) = z°.

CAUTION: be careful with the e = 0 and e < 0 cases.

In this exercise, we look at the influence on the g generation by Gen in the Gen-CDH
and Gen-DDH problems. We assume a first PPT algorithm Setup(1®¥) — (g¢, parms) to
generate the group G = (¢, parms) and we assume that from G we can extract a generator
g = Generator(G) using a deterministic polynomial-time algorithm Generator. We define
two generating algorithms.

GenFixed(1%; p):

1: run Setup(1®; p) — G = (g, parms)

2: run g = Generator(G)

3: output (g, parms, g)
We call GenFixed the setup with fized generator g.
GenRand(1%; p):

1: split p into two independent sequences p; and ps
run Setup(1%; p1) — G = (g, parms)
run g = Generator(G)
generate a € Z; with uniform distribution from p,
set h = POW(G, g, a)
output (¢, parms, h)

We call GenRand the setup with random generator h.
The DDH problem specifies two distributions with parameter s:

Source Sy(Gen): Source S;(Gen):
1: pick a large enough sequence of indepen- 1: pick a large enough sequence of indepen-
dent fair coin flips p dent fair coin flips p
2: run Gen(1%; p) — (q, parms, g) 2: run Gen(1%; p) — (g, parms, g)
3. pick z,y € Z, with uniform distribution 3: pick z,y,2 € Z, with uniform distribu-
(x, y, and p are independent) tion (x, y, z, and p are independent)
4:set X =¢" Y =¢Y, Z =g 4: 88t X =g Y =¢¥, Z =¢g*

5. output (¢, parms, g, X,Y, Z) 5. output (¢, parms, g, X,Y, 7)

The Gen-DDH problem consists of distinguishing Sy(Gen) and S;(Gen). We stress that the
DDH problem is relative to Gen; this is why we call it the Gen-DDH problem. We define
the advantage

Adv®"PPH(A) = Pr[A(S;(Gen)) = 1] — Pr[A(S;(Gen)) = 1]
The Gen-DDH is hard if and only if for all PPT distinguisher A, Adv®e"PPH(4) is negligible.

Q.2 Given a GenRand-DDH distinguisher A, construct a GenFixed-DDH distinguisher B with
the same advantage and a similar complexity.

Q.3 Show that if the GenFixed-DDH is hard, then the GenRand-DDH problem is hard.

Unfortunately, we have no implication in the other direction for the DDH problem, but
there is for the CDH problem.
The computational Diffie-Hellman (CDH) problem has instances defined by the follow-
ing source:
Source S(Gen):
1: pick a large enough sequence of independent fair coin flips p
2: run Gen(1%; p) — (g, params, g)
3: pick x,y € Z} with uniform distribution (z, y, and p are independent)
4: set X = ¢°, Y = ¢¥ {the solution to the problem is ¢g*¥}
5. output (g, params, g, X,Y)

Given a CDH solver A, we define
Succ®"PH(A) = Pr[A(S(Gen)) = ¢
The Gen-CDH is hard if and only if for all PPT solver A, Succ®"P"(A) is negligible.

Q.4 Given a GenRand-CDH solver A, construct a GenFixed-CDH solver B with similar com-

plexity and

GenRand-CDH (A) GenFixed-CDH (B)

Succ = Succ

Q.5 Given a GenFixed-CDH solver A, we denote
e, = Pr[A(S(GenFixed)) = ¢|p]

the probability of success when p in S is fixed. So, GenFixed always returns the same
group and generator (due to p being fixed). Only z, y, and possible coins used by A
remain random.

Given a GenFixed-CDH solver A, show that we can construct an algorithm Mu such
that for any integer x and y (i.e., not only for random z and y) and any p, we have

Mu(g, params, g, g%, ¢¥) = g"¥

for GenFixed(1°%; p) — (¢, params, g) with probability at least €, over the distribution of
x, y, and possible coins by A.

Q.6 Show that we can construct an algorithm In such that for any integer x and any p, we
have
In(q, params, g, g°) = gi
for GenFixed(1%; p) — (g, params, g) with probability at least ¢}’ for w = O(log q).
Q.7 Given a GenFixed-CDH solver A, construct a GenRand-CDH solver B with similar com-
plexity and
SuccGenRand—CDH(B) > (SUCCGenFixed—CDH(A))O(logq)

Q.8 Show that GenFixed-CDH is hard if and only if GenRand-CDH is hard.

3 Equivalent PRF Notions

We consider a function family f; which depends on a security parameter s. Given s, the
function f; takes a key k € Ky and an input = € X,. It produces an output y = fs(k,z) €
Ys. To have lighter notations, from now on the subscript s is omitted. We further write
the input k of f as a subscript to write fx(z) = f(k,x). We say that the function family f
is a pseudorandom function (PRF) if it can be computed in polynomial time (in terms of
s) and if for every probabilistic polynomial-time (PPT) algorithm A, the function Adv5"

(this is a function in terms of s) is a negligible function where
AdvE = Pr[ITRF(A) = 1] — Pr[ITRF(A) = 1]

and I'PRF(A) is defined with a bit b as follows:
Game ITRF(A):

1: pick s € K at random

2: set p to a long enough sequence of random coins
3:set1=1

4 (q,2:) < Al p)

5. while ¢ # final do

6: if x; € {xl,...,xi_l} then

7: abort {it is not allowed to repeat a query}
8 end if

9: if b =0 then

10: set y; = fs(2:)

11: else

12: set y; € Y at random

13: end if

14: 141+ 1

15: (g, x;) < A(y1,- -, Yi-1;p)
16: end while
17: output z;
Here, A returns a pair (¢, x). The string q is either query or final. If ¢ = query, it means that
A wants to query fs(z) and continue. If ¢ = final, it means that 4 is done and returning
a bit x as a final output.
We recall that a function Adv(s) is negligible is for all ¢ > 0, we have Adv(s) = O(s™°)
when s — +4o00.
In this exercise, we consider another notion defined by the following game:
Game IPFRF(A):
. pick s € K at random
set p to a long enough sequence of random coins
set ¢ = 1 and unset flag
(¢, ;) < A(; p)
while ¢ # final do

w o

6. if x; € {zy,...,2;_1} then

7: abort {it is not allowed to repeat a query}
8 end if

9: if g = challenge and flag is set then

10: abort {it is not allowed to make two challenges}
11: end if

12: if ¢ = challenge then

13: set flag {A is making a challenge}

14: end if

15: if ¢ = challenge and b = 1 then

16: set y; € Y at random

7. else

18: set y; = fs(x;)

19: end if

200 1< 1+1
2. (q,2;) < Alyr, ..., Yi—1;p)
22: end while{we must have ¢ = final}
23: output z;
Essentially, A always plays with f with ¢ = query and at some point uses only once a
special ¢ = challenge. For this “challenge”, the response which is returned to him is fy(z)
if b = 0 or something random if b = 1. An equivalent way consists of saying that A/+()
works in two phases, playing with a fi(---) oracle. In between the two phases, it makes a
challenge which is answer by fi(---) or at random.

We define

AdVPERE = Pr[IPe"R(A) = 1] — Pr[IPRF(A) = 1]

and we say that the function family f is a prePRF if it can be computed in polynomial
time (in terms of s) and if for every PPT algorithm A, Advi{ePRF is negligible.

The objective of this exercise is to show that PRF and prePRF are equivalent security
notions.

Q.1 Given a prePRF adversary A and a bit b, we construct a PRF adversary B, as fol-
lows:
By(y1s - - Yio1; p):
1: if ¢ = 1 then
2: set seq, and seq, to the empty sequence {first execution of By}
3: else
4: set seq, < (seq,,yi—1) {¥i—1 is the answer to the previous query}
5. end if
6: Tun (g,) = A(seq,; p)
7. if x € seq, then
8: abort {it is not allowed to repeat a query}
9: end if
10: set seq, < (seq,,x) {insert x in the list of queries}

11: if ¢ = challenge and b = 1 then
12: set y € Y at random

13 set seq, < (seq,,y)

14: run (g, v) = A(seq,; p)

15: if o € seq, then

16: abort {it is not allowed to repeat a query}

17: end if

18: set seq, < (seq,,x) {insert z in the list of queries}
19: end if

20: output (¢,)
So, B simulates A and simulates the answer to random for the ¢ = challenge and b = 1
case.

Show that
Pr{I§™ (A) = 1] = Pr{I7 R (Bo) = 1]
e[(A) = 1] = Pr{I7R(By) = 1]
Pr[ITR(By) = 1] = Pr[IT(By) = 1]
Show that if f is a PRF, then f is a prePRF.

We define the following game:
Game [7(A):

1: pick s € K at random

2: set p to a long enough sequence of random coins
3:seti=1

4: (q,2i) + A(; p)

5. while ¢ # final do

6: if x; € {zy,..., 2,1} then

T: abort {it is not allowed to repeat a query}
8: end if

9: if 1 < j then

10: set y; = fs(z;) {answer using fs to the j first queries}
11: else

12: set y; € V) at random

13: end if

14: 141+ 1

15: (Q7xl) <_A(y17"'7yi71;p)

16: end while{we must have ¢ = final}

17: output x;

Show that for a PPT adversary A, there exists some polynomially bounded) such that
we have

Pr[I?(A) =
Pr[I"(A) =

Q.4 Given a PPT adversary A and an integer j, we construct an adversary B, as fol-
lows:

Bi(y1,- -, ¥i-1;p):
1 run (q,z;) = A(y1, ..., Yi—1; p)
if © = 7 then
set ¢ to challenge
end if
if + > j then
while ¢ # final and z; & {z1,...,2;_1} do
set y; € V at random
14141
run (g, 2;) = A(y1, ..., ¥i-15 p)
end while
. end if
12: output (g, ;)
Show that

—
—= o

Pr[I7(A) =1]

1] = PeI3"(B;)
Pr[IV1(A) = 1]

Pr[]vlprePRF (Bj)

Q.5 Show that if f is a prePRF, then f is a PRF.

