
Advanced Cryptography — Final Exam

Serge Vaudenay

21.6.2016

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Σ Protocol in an Group of Exponent 2

Given an integer s, we consider an Abelian group G (with multiplicative notations) such
that for all x ∈ G, we have x2 = 1. We assume that there are deterministic polynomial
time algorithms to compute the order n of G, to multiply and to compare two group
elements. More precisely, given x and y we can compute xy and say whether x = y. For
x = (x1, . . . , xm, y) ∈ Gm+1 and w = (w1, . . . , wm) ∈ {0, 1}m, we consider the following
relation:

R(x;w)⇐⇒ y = xw1
1 · · · xwm

m

We consider the following protocol:

Prover Verifier
w x

pick r = (r1, . . . , rm) ∈U {0, 1}m
a = xr1

1 · · · xrm
m

a−−→
e←−− pick e ∈U {0, 1}

z = r ⊕ ew
z−−→ check xz1

1 · · · xzm
m = aye

where ⊕ denotes the XOR operation (exclusive OR) between two bits and ∈U denotes a
random selection with uniform distribution and fresh coins.

Q.1 Following the terminology of Σ protocols, show that the above protocol has special
soundness.

Q.2 Following the terminology of Σ protocols, show that the above protocol is special HVZK
(special honest verifier zero-knowledge).

Q.3 Show that the proposed protocol is a Σ protocol.



2 On Generator Generation in Diffie-Hellman Problems

In the Computational Diffie-Hellman (CDH) Problem and the Decisional Diffie-Hellman
(DDH) Problem, there is a security parameter (integer) s as input to a probabilistic
polynomial-time (PPT) algorithm Gen(1s) → (q, parms, g) to generate a prime number
q together with an element g and some parameters params. The values q and params define
a group G = (q, params) of order q in which g is a generator. We denote G = ⟨g⟩ and x ∈ G
to mean that g generates G and x belongs to G. We assume multiplicative notations in
the group. We assume we have two deterministic polynomial-time algorithms MUL and EQ
such that for all x, y ∈ G, we have MUL(G, x, y) = xy and EQ(G, x, y) = 1x=y.

Q.1 Show that we can design deterministic polynomial-time algorithms UN, INV, and POW
such that for all x ∈ G and e ∈ Z, we have UN(G, x) = 1, INV(G, x) = x−1, and
POW(G, x, e) = xe.
CAUTION: be careful with the e = 0 and e < 0 cases.

In this exercise, we look at the influence on the g generation by Gen in the Gen-CDH
and Gen-DDH problems. We assume a first PPT algorithm Setup(1s) → (q, parms) to
generate the group G = (q, parms) and we assume that from G we can extract a generator
g = Generator(G) using a deterministic polynomial-time algorithm Generator. We define
two generating algorithms.

GenFixed(1s; ρ):
1: run Setup(1s; ρ)→ G = (q, parms)
2: run g = Generator(G)
3: output (q, parms, g)

We call GenFixed the setup with fixed generator g.

GenRand(1s; ρ):
1: split ρ into two independent sequences ρ1 and ρ2
2: run Setup(1s; ρ1)→ G = (q, parms)
3: run g = Generator(G)
4: generate a ∈ Z∗

q with uniform distribution from ρ2
5: set h = POW(G, g, a)
6: output (q, parms, h)

We call GenRand the setup with random generator h.
The DDH problem specifies two distributions with parameter s:

Source S0(Gen):
1: pick a large enough sequence of indepen-

dent fair coin flips ρ
2: run Gen(1s; ρ)→ (q, parms, g)
3: pick x, y ∈ Zq with uniform distribution

(x, y, and ρ are independent)
4: set X = gx, Y = gy, Z = gxy

5: output (q, parms, g,X, Y, Z)

Source S1(Gen):
1: pick a large enough sequence of indepen-

dent fair coin flips ρ
2: run Gen(1s; ρ)→ (q, parms, g)
3: pick x, y, z ∈ Zq with uniform distribu-

tion (x, y, z, and ρ are independent)
4: set X = gx, Y = gy, Z = gz

5: output (q, parms, g,X, Y, Z)



The Gen-DDH problem consists of distinguishing S0(Gen) and S1(Gen). We stress that the
DDH problem is relative to Gen; this is why we call it the Gen-DDH problem. We define
the advantage

AdvGen-DDH(A) = Pr[A(S0(Gen)) = 1]− Pr[A(S1(Gen)) = 1]

The Gen-DDH is hard if and only if for all PPT distinguisherA, AdvGen-DDH(A) is negligible.

Q.2 Given a GenRand-DDH distinguisherA, construct a GenFixed-DDH distinguisher B with
the same advantage and a similar complexity.

Q.3 Show that if the GenFixed-DDH is hard, then the GenRand-DDH problem is hard.

Unfortunately, we have no implication in the other direction for the DDH problem, but
there is for the CDH problem.

The computational Diffie-Hellman (CDH) problem has instances defined by the follow-
ing source:

Source S(Gen):
1: pick a large enough sequence of independent fair coin flips ρ
2: run Gen(1s; ρ)→ (q, params, g)
3: pick x, y ∈ Z∗

q with uniform distribution (x, y, and ρ are independent)
4: set X = gx, Y = gy {the solution to the problem is gxy}
5: output (q, params, g,X, Y )

Given a CDH solver A, we define

SuccGen-CDH(A) = Pr[A(S(Gen)) = gxy]

The Gen-CDH is hard if and only if for all PPT solver A, SuccGen-CDH(A) is negligible.

Q.4 Given a GenRand-CDH solver A, construct a GenFixed-CDH solver B with similar com-
plexity and

SuccGenRand-CDH(A) = SuccGenFixed-CDH(B)
Q.5 Given a GenFixed-CDH solver A, we denote

ερ = Pr[A(S(GenFixed)) = gxy|ρ]

the probability of success when ρ in S is fixed. So, GenFixed always returns the same
group and generator (due to ρ being fixed). Only x, y, and possible coins used by A
remain random.
Given a GenFixed-CDH solver A, show that we can construct an algorithm Mu such
that for any integer x and y (i.e., not only for random x and y) and any ρ, we have

Mu(q, params, g, gx, gy) = gxy

for GenFixed(1s; ρ)→ (q, params, g) with probability at least ερ over the distribution of
x, y, and possible coins by A.



Q.6 Show that we can construct an algorithm In such that for any integer x and any ρ, we
have

In(q, params, g, gx) = g
1
x

for GenFixed(1s; ρ)→ (q, params, g) with probability at least εwρ for w = O(log q).
Q.7 Given a GenFixed-CDH solver A, construct a GenRand-CDH solver B with similar com-

plexity and

SuccGenRand-CDH(B) ≥
(
SuccGenFixed-CDH(A)

)O(log q)

Q.8 Show that GenFixed-CDH is hard if and only if GenRand-CDH is hard.



3 Equivalent PRF Notions

We consider a function family fs which depends on a security parameter s. Given s, the
function fs takes a key k ∈ Ks and an input x ∈ Xs. It produces an output y = fs(k, x) ∈
Ys. To have lighter notations, from now on the subscript s is omitted. We further write
the input k of f as a subscript to write fk(x) = f(k, x). We say that the function family f
is a pseudorandom function (PRF) if it can be computed in polynomial time (in terms of
s) and if for every probabilistic polynomial-time (PPT) algorithm A, the function AdvPRFA
(this is a function in terms of s) is a negligible function where

AdvPRFA = Pr[Γ PRF
0 (A) = 1]− Pr[Γ PRF

1 (A) = 1]

and Γ PRF
b (A) is defined with a bit b as follows:

Game ΓPRF
b (A):

1: pick s ∈ K at random
2: set ρ to a long enough sequence of random coins
3: set i = 1
4: (q, xi)← A(; ρ)
5: while q ̸= final do
6: if xi ∈ {x1, . . . , xi−1} then
7: abort {it is not allowed to repeat a query}
8: end if
9: if b = 0 then

10: set yi = fs(xi)
11: else
12: set yi ∈ Y at random
13: end if
14: i← i+ 1
15: (q, xi)← A(y1, . . . , yi−1; ρ)
16: end while
17: output xi

Here, A returns a pair (q, x). The string q is either query or final. If q = query, it means that
A wants to query fs(x) and continue. If q = final, it means that A is done and returning
a bit x as a final output.

We recall that a function Adv(s) is negligible is for all c > 0, we have Adv(s) = O(s−c)
when s→ +∞.

In this exercise, we consider another notion defined by the following game:

Game Γ prePRF
b (A):

1: pick s ∈ K at random
2: set ρ to a long enough sequence of random coins
3: set i = 1 and unset flag
4: (q, xi)← A(; ρ)
5: while q ̸= final do



6: if xi ∈ {x1, . . . , xi−1} then
7: abort {it is not allowed to repeat a query}
8: end if
9: if q = challenge and flag is set then

10: abort {it is not allowed to make two challenges}
11: end if
12: if q = challenge then
13: set flag {A is making a challenge}
14: end if
15: if q = challenge and b = 1 then
16: set yi ∈ Y at random
17: else
18: set yi = fs(xi)
19: end if
20: i← i+ 1
21: (q, xi)← A(y1, . . . , yi−1; ρ)
22: end while{we must have q = final}
23: output xi

Essentially, A always plays with f with q = query and at some point uses only once a
special q = challenge. For this “challenge”, the response which is returned to him is fs(x)
if b = 0 or something random if b = 1. An equivalent way consists of saying that Afk(·)

works in two phases, playing with a fk(· · · ) oracle. In between the two phases, it makes a
challenge which is answer by fk(· · · ) or at random.

We define
AdvprePRFA = Pr[Γ prePRF

0 (A) = 1]− Pr[Γ prePRF
1 (A) = 1]

and we say that the function family f is a prePRF if it can be computed in polynomial
time (in terms of s) and if for every PPT algorithm A, AdvprePRFA is negligible.

The objective of this exercise is to show that PRF and prePRF are equivalent security
notions.

Q.1 Given a prePRF adversary A and a bit b, we construct a PRF adversary Bb as fol-
lows:

Bb(y1, . . . , yi−1; ρ):
1: if i = 1 then
2: set seqx and seqy to the empty sequence {first execution of Bb}
3: else
4: set seqy ← (seqy, yi−1) {yi−1 is the answer to the previous query}
5: end if
6: run (q, x) = A(seqy; ρ)
7: if x ∈ seqx then
8: abort {it is not allowed to repeat a query}
9: end if

10: set seqx ← (seqx, x) {insert x in the list of queries}



11: if q = challenge and b = 1 then
12: set y ∈ Y at random
13: set seqy ← (seqy, y)
14: run (q, x) = A(seqy; ρ)
15: if x ∈ seqx then
16: abort {it is not allowed to repeat a query}
17: end if
18: set seqx ← (seqx, x) {insert x in the list of queries}
19: end if
20: output (q, x)

So, B simulates A and simulates the answer to random for the q = challenge and b = 1
case.
Show that

Pr[Γ prePRF
0 (A) = 1] = Pr[ΓPRF

0 (B0) = 1]

Pr[Γ prePRF
1 (A) = 1] = Pr[ΓPRF

0 (B1) = 1]

Pr[Γ PRF
1 (B0) = 1] = Pr[ΓPRF

1 (B1) = 1]

Q.2 Show that if f is a PRF, then f is a prePRF.
Q.3 We define the following game:

Game Γ j(A):
1: pick s ∈ K at random
2: set ρ to a long enough sequence of random coins
3: set i = 1
4: (q, xi)← A(; ρ)
5: while q ̸= final do
6: if xi ∈ {x1, . . . , xi−1} then
7: abort {it is not allowed to repeat a query}
8: end if
9: if i ≤ j then

10: set yi = fs(xi) {answer using fs to the j first queries}
11: else
12: set yi ∈ Y at random
13: end if
14: i← i+ 1
15: (q, xi)← A(y1, . . . , yi−1; ρ)
16: end while{we must have q = final}
17: output xi

Show that for a PPT adversary A, there exists some polynomially bounded Q such that
we have

Pr[ΓQ(A) = 1] = Pr[Γ PRF
0 (A) = 1]

Pr[Γ 0(A) = 1] = Pr[Γ PRF
1 (A) = 1]



Q.4 Given a PPT adversary A and an integer j, we construct an adversary Bj as fol-
lows:

Bj(y1, . . . , yi−1; ρ):
1: run (q, xi) = A(y1, . . . , yi−1; ρ)
2: if i = j then
3: set q to challenge
4: end if
5: if i > j then
6: while q ̸= final and xi ̸∈ {x1, . . . , xi−1} do
7: set yi ∈ Y at random
8: i← i+ 1
9: run (q, xi) = A(y1, . . . , yi−1; ρ)

10: end while
11: end if
12: output (q, xi)

Show that

Pr[Γ j(A) = 1] = Pr[Γ prePRF
0 (Bj) = 1]

Pr[Γ j−1(A) = 1] = Pr[Γ prePRF
1 (Bj) = 1]

Q.5 Show that if f is a prePRF, then f is a PRF.


