
Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

10.5.2015

– duration: 3h
– any document allowed
– a pocket calculator is allowed
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– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Recovering a Secret RSA Modulus

Some people use RSA signature with exponent e = 216 + 1 but they use too small prime
numbers p and q to be secure. So, to prevent n from being factored, they decide to keep
n = pq secret. Only legitimate verifiers will receive n.

Q.1 Given a message m ∈ Zn and a valid signature s, show that we can easily recover a
multiple of n.

Since se mod n = m, the integer se−m is a multiple of n. It is quite big though.

Q.2 What is the complexity?

For i = 1 to 16, we have to iteratively square a number of size originally
log n. So, the complexity of the ith iteration is O((2i log n)2). Hence, the final
complexity is O((e log n)2).

Q.3 Given a prime number r, what is roughly the probability that r divides the multiple of
n recovered in Q.1? (Assume that m is random.)

We have a random multiple x of n. So, r is a factor of it if and only if x mod
r = 0, so with probability 1

r
.

Q.4 With two message/signature (mi, si) pairs, show that we can recover n with high prob-
ability.



Given one pair, we recover a random multiple of n. We can easily remove the
small prime factors of this multiple. Finding really small factors can be done
by trial division. Other small factors can be found by the ECM method.
Then, we are left with hard-to-find random prime factors r which are different
from p and q. The number of prime factor r which are at least B and divide
both numbers is bounded by

∑
r−2 when we sum over all prime numbers larger

than B. So, this is bounded by 1
B
. This means that as B is large enough, we

should have no prime factor r > B is common.
As the probability that the same big random prime factor appears in the two
computations, the gcd of two recovered random multiples of n will yield n once
the small factors are removed.



2 Finding Four-Term Zero Sums

The exercise is inspired by A Generalized Birthday Problem by Wagner. Pub-
lished in the proceedings of Crypto’02 pp. 288–303, LNCS vol. 2442, Springer
2002.

Looking for collisions is frequent in cryptography. A collision of bitstrings is nothing but
a two-term zero sum, using the XOR (denoted by ⊕) to define addition. A variant of this
problem is to find four-term zero sums. For instance, if we define the signature of a pair of
strings (x1, x2) of specific format to be the signature of x1 ⊕ x2, we have a forgery attack
by looking for a four-term zero sum x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 with strings x1, x2, x3, x4 taken
from lists of strings of a specific format.

In what follows, we call a random list of ℓ-bit strings the sequence L = (x1, . . . , xn)
obtained by picking all xi independently uniformly at random in {0, 1}ℓ. We call n the
length of the list. We denote by ⊕ the bitwise XOR operation between bitstrings.

Q.1 Given two lists L1 and L2 of length n1 and n2, respectively, in the following subquestions,
we consider algorithms to find all (i, j) pairs such that the ith element of L1 and the
jth element of L2 give a XOR of zero.

Q.1a Compute n3, the expected number of such pairs (i, j).

The number of (i, j) pairs is n1n2. Each pair is valid with probability 2−ℓ. So,
the expected number of pairs is n1n22

−ℓ. More precisely,

E(n3) = E (#{(i, j);xi = yj}) =
n1∑
i=1

n2∑
j=1

Pr[xi = yj] =

n1∑
i=1

n2∑
j=1

2−ℓ = n1n22
−ℓ

Q.1b Give an algorithm with complexity O(n1ℓ + n2ℓ + n3 logmax(n1, n2)) to find these
n3 pairs.



We first scan L1 = (x1, . . . , xn1). For each i = 1, . . . , n1, we insert i in a
hash table at position h(xi). This takes n1 iterations where we essentially have
to read xi and hash it. Assuming that hashing an ℓ-bit string takes O(ℓ), we
obtain O(n1ℓ). Then, we scan L2 = (y1, . . . , yn2). For each j = 1, . . . , n2,
we look at position h(yj). Each i that we find produce the output (i, j). This
takes n2 iterations where we essentially have to read yj and hash it, so O(n2ℓ).
We further have to enumerate all matching i. This sums to n3 iterations for
showing (i, j). Assuming that printing (i, j) takes O(logmax(n1, n2)) (the bit-
sze of i and j), we obtain O(n3 logmax(n1, n2)).
Here, we neglected the cost of storing many i’s at the same place. These are
collisions in the hash function. If collisions are rare, this approximation is
valid.
An alternate approach is to sort L1 and L2 then scan both lists at the same time
to see collisions and copy them in the final list. Sorting L1 takes O(n1 log n1)
string comparison, so O(n1ℓ log n1). The same holds for sorting L2. The com-
plexity for scanning and comparing is O(n1ℓ+n2ℓ) so absorved by the complex-
ity of sorting. The complexity of copying the result is O(n3 logmax(n1, n2)).

In the following questions, we discard the ℓ factors from the complexities for sim-
plicity. I.e., the cost of copying or comparing ℓ-bit strings is O(1). Similarly, copying
an index i or j is assumed to take O(1).

Q.1c What is the optimal value for n1 and n2 to make n3 = 1 and minimize the complexity
at the same time? What is the complexity with these parameters?

We let n1 and n2 be such that n1n2 = 2ℓ. We want to minimize n1 + n2 =
n1 +

2ℓ

n1
. The function x 7→ x + 2ℓ

x
has a derivative which vanish on x = 2

ℓ
2 .

It corresponds to the minimum of the function. So, the optimal value is n1 =
n2 = 2

ℓ
2 . The complexity is O(2

ℓ
2 ).

Q.2 We denote Lj = (xj,1, . . . , xj,n). Given four lists L1, L2, L3, L4 of same length n, we want
to find tuples (i1, i2, i3, i4) such that x1,i1 ⊕ x2,i2 ⊕ x3,i3 ⊕ x4,i4 = 0.

Q.2a What is the expected number of solutions?

Give an efficient algorithm to find them all and its complexity.

It is n42−ℓ.
To find them, we can first enumerate all (i1, i2) pairs and store (i1, i2) at posi-
tion h(xi1⊕xi2) for L1×L2. Then, for all (i3, i4) we can check the hash table at
position h(xi3 ⊕ xi4) and show (i1, i2, i3, i4) for each (i1, i2) found. This works
with complexity O(n2 + n42−ℓ).

Q.2b We now want to find all tuples (i1, i2, i3, i4) such that x1,i1 ⊕ x2,i2 and x3,i3 ⊕ x4,i4

have both their b most significant bits equal to zero and x1,i1 ⊕ x2,i2 = x3,i3 ⊕ x4,i4 .

What is the expected number of solutions?

Give an algorithm to find them all with complexity O(n+ n22−b + n42−ℓ−b).



The number of solutions is now n42−ℓ−b as we have a constraint on b more
bits.
We can first find all (i1, i2) pairs such that x1,i1 ⊕ x2,i2 start with b zero bits
in complexity O(n+ n22−b). For each of these pairs, we can store (i1, i2) in a
hash table at position h(x1,i1 ⊕x2,i2). We can do the same for (i3, i4), then find
all tuples.

Q.2c Give an optimal b and n such that we can find one expected tuple with zero XOR.
Give the corresponding complexity.
NOTE: to simplify the computations, allow b to take any real value.

As we need one solution we can lower n so that n42−ℓ−b = 1. The complexity
is thus O(n + n22−b). Since n = 2

ℓ
4
+ b

4 , the complexity is O(2
ℓ
4
+ b

4 + 2
ℓ
2
− b

2 ). To

minimize it, we must have ℓ
4
+ b

4
= ℓ

2
− b

2
so b = ℓ

3
thus n = 2

ℓ
3 . The final

complexity is O(2
ℓ
3 ).

Q.2d What is the complexity to obtain α ≤ n solutions instead of just one?
As an application, give n, b, and the complexity for α = n.

We redo the previous computation with n = α
1
42

ℓ
4
+ b

4 , the complexity is
O(α

1
42

ℓ
4
+ b

4 + α
1
22

ℓ
2
− b

2 + α). To minimize it, we must have ℓ
4
+ b

4
+ 1

4
log2 α =

ℓ
2
− b

2
+ 1

2
log2 α so b = ℓ

3
+ 1

3
log2 α thus n = α

1
32

ℓ
3 . The final complexity is

O(α
1
32

ℓ
3 + α).

For α = n, we have α = 2
ℓ
2 so n = 2

ℓ
2 , b = ℓ

2
, and the complexity is O(2

ℓ
2 ).



3 Number of Samples to Distinguish Two Distributions

Given two distributions P0 and P1, we recall that the statistical distance d(P0, P1) is defined
by

d(P0, P1) =
1

2

∑
z

|P0(z)− P1(z)|

We define the Hellinger distance H(P0, P1) by

H(P0, P1) =

√
1

2

∑
z

(√
P0(z)−

√
P1(z)

)2
If P is a distribution, we denote by P⊗n the distribution of the tuple (X1, . . . , Xn) where
all Xi are independent random variables following the distribution P .

Q.1 Show that

H(P0, P1) =

√
1−

∑
z

√
P0(z)P1(z)

By expanding the square in the sum inside the square root, we have

H(P0, P1) =

√
1

2

∑
z

(
P0(z) + P1(z)− 2

√
P0(z)P1(z)

)
As
∑

z P0(z) =
∑

z P1(z) = 1, we obtain the result.

Q.2 We have a biased dice with faces numbered from 1 to 6. We consider the distribution
P0 such that P0(1) =

1
6
− ε and P0(x) =

1
6
+ ε

5
for x = 2, . . . , 6. We consider the uniform

distribution P1.
Compute an asymptotic equivalent of d(P0, P1) and H(P0, P1) for ε → 0.
HINT:

√
1 + t = 1 + 1

2
t− 1

8
t2 + o(t2) when t → 0.

We have d(P0, P1) = ε and 1 − H(P0, P1)
2 = 1

6

√
1− 6ε + 5

6

√
1 + 6

5
ε. Since

√
1 + t = 1+ 1

2
t− 1

8
t2+ o(t2), we obtain that 1−H(P0, P1)

2 = 1− 9
10
ε2+ o(ε2).

So, H(P0, P1) ∼ 3√
10
ε.

Q.3 Using an upper bound for d(P⊗n
0 , P⊗n

1 ) in terms of d(P0, P1), show that for n ≤ n0.5, the
advantage of any distinguisher between P0 and P1 using n samples has an advantage
lower than 0.5, where

n0.5 =
0.5

d(P0, P1)



We have seen in the course that d(P⊗n
0 , P⊗n

1 ) ≤ nd(P0, P1). So, for n ≤ n0.5,
we have d(P⊗n

0 , P⊗n
1 ) ≤ 0.5. We have seen in the course that d(P⊗n

0 , P⊗n
1 ) is

the largest advantage we can obtain to distinguish P0 from P1 using n samples.
Hence, any distinguisher using n samples has an advantage limited to 0.5.

Q.4 One problem with the previous approach is that we do not know what to say when
n ≥ n0.5. Actually, the bound we obtain is very loose, as we will see.

In the following questions, we estimate d(P⊗n
0 , P⊗n

1 ) in terms of H(P0, P1).

Q.4a Show that 1−H(P⊗n
0 , P⊗n

1 )2 = (1−H(P0, P1)
2)n.

We have

1−H(P⊗n
0 , P⊗n

1 )2 =
∑

z1,...,zn

√
P0(z1, . . . , zn)P1(z0, . . . , zn)

=
∑

z1,...,zn

√
P0(z1)P1(z1) · · ·P0(zn)P1(zn)

=
∑
z1

√
P0(z1)P1(z1) · · ·

∑
zn

√
P0(zn)P1(zn)

=

(∑
z

√
P0(z)P1(z)

)n

=
(
1−H(P0, P1)

2
)n

So, as n grows, we can estimate H(P⊗n
0 , P⊗n

1 ) using H(P0, P1) with no loss at all.

Q.4b Show that

H(P0, P1)
2 ≤ d(P0, P1) ≤

√
1− (1−H(P0, P1)2)2

HINT:
(√

a−
√
b
)2

≤ |a− b| = |
√
a−

√
b| × (

√
a+

√
b)



Using the Cauchy-Schwarz inequality, we have

d(P0, P1) =
1

2

∑
z

|
√

P0(z)−
√

P1(z)| × (
√
P0(z) +

√
P1(z))

≤ 1

2

√∑
z

(
√
P0(z)−

√
P1(z))2

√∑
z

(
√

P0(z) +
√

P1(z))2

(1)
= H(P0, P1)

√
1

2

∑
z

(
√
P0(z) +

√
P1(z))2

(2)
= H(P0, P1)

√
1 +

∑
z

√
P0(z)P1(z)

(3)
= H(P0, P1)

√
2−H(P0, P1)2

=
√
2H(P0, P1)2 −H(P0, P1)4

=
√
1− (1−H(P0, P1)2)2

where (1) is by definition of H, (2) is by expanding the square, and (3) is by
using Q.1.
For the other inequality, we have

d(P0, P1) =
1

2

∑
z

|P0(z)− P1(z)| ≥
1

2

∑
z

(√
P0(z)−

√
P1(z)

)2
= H(P0, P1)

2

Q.4c Show that

1− (1−H(P0, P1)
2)n ≤ d(P⊗n

0 , P⊗n
1 ) ≤

√
1− (1−H(P0, P1)2)2n

This is a direct application of Q.4b with P⊗n
0 and P⊗n

1 followed by a direct
application of Q.4a.

Q.4d Consider that the advantage of the best distinguisher using n samples is an incresing
function of n that we extend over the real numbers. Let n0.5 be the value of n for
which the advantage is 0.5. Show that

0.20

− log2(1−H(P0, P1)2)
≤ n0.5 ≤

1

− log2(1−H(P0, P1)2)

HINT: log2
3
4
≈ −0.4150.



We know that the best advantage is the statistical distance. So, by using Q.4c,
we have

1− (1−H(P0, P1)
2)n0.5 ≤ 0.5

So, by unrolling n0.5, we obtain

n0.5 ≤
log(0.5)

log(1−H(P0, P1)2)
=

1

− log2(1−H(P0, P1)2)

By using Q.4c, we have

0.5 ≤
√
1− (1−H(P0, P1)2)2n0.5

So, by unrolling n0.5, we obtain

n0.5 ≥
log 3

4

2 log(1−H(P0, P1)2)
≥ 0.20

− log2(1−H(P0, P1)2)

Q.5 Compare n0.5 from Q.3 and Q.4d for the example of Q.2.

For Q.3, we have n0.5 ∼ 0.5
ε

and no idea about what happens for n ≥ n0.5. For
Q.4d, we have n0.5 ∼ λ

ε2
with 0.20 ln 2

9
10

≤ λ ≤ ln 2
9
10

. So, 0.1540 ≤ λ ≤ 0.7702.

Clearly, we have a much more precise result.


