
Advanced Cryptography — Final Exam

Serge Vaudenay

26.6.2018

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Ciphertext Collision in Semantically Secure Cryptosystems

We consider a public-key cryptosystem (Gen,M,Enc,Dec). We assume perfect correctness,
i.e. for all s and all x ∈M, if (Kp, Ks)← Gen(1s) then

Pr[DecKs(EncKp(x)) = x] = 1

Given a probabilistic polynomial-time adversary A, we consider the following game:

Game ΓA(s):
1: (Kp, Ks)← Gen(1s)
2: X ← A(Kp)
3: Y0 ← EncKp(X)
4: Y1 ← EncKp(X)
5: return 1Y0=Y1

Q.1 Prove that if the cryptosystem is IND-CPA secure, then Pr[ΓA(s)→ 1] is negligible.
Hint: construct an IND-CPA adversary with advantage related to Pr[ΓA(s)→ 1].

2 Non-Malleability in Adaptive Security

We consider a public-key cryptosystem (Gen,M,Enc,Dec). We assume perfect correctness,
i.e. for all s and all x ∈M, if (Kp, Ks)← Gen(1s) then

Pr[DecKs(EncKp(x)) = x] = 1

Given an adversary in two parts A = (A1,A2), a bit b ∈ {0, 1}, and the security
parameter s, we define the IND-CCA game as follows:

Game IND-CCAb
A(s)

1: (Kp, Ks)← Gen(1s)

2: (X0, X1, σ)← AO1(·)
1 (Kp) ▷ σ is a “state” for A1 to transmit data to A2

3: Y ← EncKp(Xb)

4: b′ ← AO2(·)
2 (σ, Y)

5: return b′

where the oracles O1 and O2 are defined as follows:

Oracle O1(y):
1: return DecKs(y)

Oracle O2(y):
2: if y = Y then
3: abort the game
4: end if
5: return DecKs(y)

We define the advantage

AdvIND-CCAA (s) = Pr[IND-CCA1
A(s)→ 1]− Pr[IND-CCA0

A(s)→ 1]

We say that the cryptosystem is IND-CCA secure if for all probabilistic polynomial time
(PPT) adversary A, AdvIND-CCAA (s) is negligible.

Q.1 The definition of IND-CCA security which was given in the course (Def.5.5 on p.55–
56 in the lecture notes, or slide p.404) was based on an interactive game between
an adversary and a challenger. Prove that the two styles of definition for IND-CCA
security are equivalent. (Carefully construct (A1,A2) from an interactive adversary
and an interactive adversary from (A1,A2).)

Q.2 Let A = (A1,A2) be an IND-CCA adversary. We define another IND-CCA adversary as
follows:

Algorithm BO1(·)
1 (Kp)

1: simulate AO1(·)
1 (Kp)→ (X0, X1, σ)

2: if X0 = X1 then
3: set σ′ ← (σ, 1)
4: pick an arbitrary X such that X ̸= X1

2

5: return (X,X1, σ
′)

6: else
7: set σ′ ← (σ, 0)
8: return (X0, X1, σ

′)
9: end if

Algorithm BO2(·)
2 (σ′, Y)

10: parse σ′ = (σ, c)
11: if c = 1 then
12: return 0
13: else
14: simulate AO2(·)

2 (σ, Y)→ b′

15: return b′

16: end if

Prove that
AdvIND-CCAA (s) = AdvIND-CCA

B (s)

Deduce that we can always assume X0 ̸= X1 in an IND-CCA adversary.

We now define the NM-CCA game (for non-malleability) as follows:

Game NM-CCAb
A(s)

1: (Kp, Ks)← Gen(1s)

2: (M,σ)← AO1(·)
1 (Kp) ▷ σ is a “state” which allows A1 to transmit data to A2

3: X0 ←M ▷ M is a sampling algorithm defined by A1

4: X1 ←M ▷ we sample two independent plaintexts using M
5: Y ← EncKp(X1)

6: (R, Y ′
1 , . . . , Y

′
n)← A

O2(·)
2 (σ, Y) ▷ R is a poly. algo. returning a boolean

7: X ′
i ← DecKs(Y

′
i), i = 1, . . . , n

8: if Y ̸∈ {Y ′
1 , . . . , Y

′
n} and ⊥ ̸∈ {X ′

1, . . . , X
′
n} and R(Xb, X

′
1, . . . , X

′
n) then

9: return 1
10: else
11: return 0
12: end if

We use the same oracles O1 and O2 as for IND-CCA. We define

AdvNM-CCA
A (s) = Pr[NM-CCA1

A(s)→ 1]− Pr[NM-CCA0
A(s)→ 1]

We say that the cryptosystem is NM-CCA secure if for all probabilistic polynomial time
(PPT) adversary A, AdvNM-CCAA (s) is negligible.

The goal of this exercise is to show the equivalence between NM-CCA security and
IND-CCA security.

3

Q.3 We assume thatM has a group structure (additively denoted), with at least two dif-
ferent elements 0 and 1, 0 being neutral. Assume that there is a polynomial algorithm
Inc such that for all s,

Pr
[
DecKs(IncKp(EncKp(X))) = X + 1

]
= 1

for (Kp, Ks) ← Gen(1s). By constructing an adversary A = (A1,A2), prove that the
cryptosystem is not NM-CCA secure.
(The precision of the proof is important.)
HINT: use M sampling in a set of two different plaintexts and R defined by R(X,X ′) =
1X′=X+1.

Q.4 Given an NM-CCA adversary A = (A1,A2), we construct an IND-CCA adversary B =
(B1,B2) as follows:

Algorithm BO1(·)
1 (Kp)

1: simulate AO1(·)
1 (Kp)→ (M,σ)

2: sample z0 ←M
3: sample z1 ←M
4: set σ′ ← (z0, z1, σ)
5: return (z0, z1, σ

′)

Algorithm BO2(·)
2 (σ′, Y)

6: parse σ′ = (z0, z1, σ)

7: simulate AO2(·)
2 (σ, Y)→ (R, Y ′

1 , . . . , Y
′
n)

8: for i = 1, . . . , n do
9: if Y = Y ′

i then return 0
10: X ′

i ← O2(Y
′
i)

11: if X ′
i = ⊥ then return 0

12: end for
13: compute b′ ← R(z1, X

′
1, . . . , X

′
n)

14: return b′

Prove that
AdvIND-CCAB (s) = AdvNM-CCA

A (s)

Deduce that IND-CCA security implies NM-CCA security.
Q.5 We assume thatM has at least four elements.

Given an IND-CCA adversary A = (A1,A2), we construct an NM-CCA adversary B =
(B1,B2) as follows:

Algorithm BO1(·)
1 (Kp)

1: simulate AO1(·)
1 (Kp)→ (z0, z1, σ)

2: define M sampling in {z0, z1} with uniform distribution
3: set σ′ ← (σ,Kp, z0, z1)
4: return (M,σ′)

Algorithm BO2(·)
2 (σ′, Y)

5: parse σ′ = (σ,Kp, z0, z1)

4

6: take an injective function T on M such that T (z0) ̸∈ {z0, z1} and T (z1) ̸∈
{z0, z1}

7: simulate AO2(·)
2 (σ, Y)→ b′

8: Y ′ ← EncKp(T (zb′))
9: define R(X,X ′) = 1T (X)=X′

10: return (R, Y ′)
Prove that

AdvNM-CCAB (s) =
1

2
AdvIND-CCA

A (s)

Deduce that NM-CCA security implies IND-CCA security.
HINT1: assume without loss of generality that z0 ̸= z1
HINT2: compute Pr[X0 = zb′], Pr[X1 = zb′|X1 = z1], and Pr[X1 = zb′|X1 = z0].

5

3 Unruh Transform from Σ to NIZK

We consider a Σ protocol (P, V) for a relation R. We let E be the set of challenges. Given
some parameters t and m ≥ 2, we define the following non-interactive zero-knowledge proof
(NIZK), with input (x,w) such that R(x,w) holds:

Algorithm Proof(x,w):
1: for i = 1 to t do
2: pick a sequence of fresh coins ρi
3: set ai ← P (x,w; ρi)
4: for j = 1 to m do
5: pick ei,j ∈ E − {ei,1, . . . , ei,j−1} at random
6: set zi,j ← P (x,w, ei,j; ρi)
7: set hi,j ← G(zi,j)
8: end for
9: end for

10: set h← H(x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t)
11: set (J1, . . . , Jt)← h
12: set zi = zi,Ji for i = 1, . . . , t
13: set π = (ai, (ei,j, hi,j)j=1,...,m, zi)i=1,...,t

14: return π

This algorithm uses two random oracles G and H. Oracle H is assumed to return a t-
tuple of integers between 1 and m. We use the following verification algorithm (with some
missing step):

Algorithm Verify(x, π):
1: parse π = (ai, (ei,j, hi,j)j=1,...,m, zi)i=1,...,t

2: set h← H(x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t)
3: set (J1, . . . , Jt)← h
4: verify · · ·
5: verify V (x, ai, ei,Ji , zi) for i = 1, . . . , t
6: verify hi,Ji = G(zi) for i = 1, . . . , t
7: return 1 if all verifications passed

Q.1 By taking the verification with the missing step, give an algorithm to forge a proof
given x but without the knowledge of w.
Which step should be added to have a sound proof?

Q.2 With the new verification step from the last question, given an algorithm with com-
plexity O(mt) to forge a valid π from x but without w.

Q.3 Construct a simulator in the random oracle model to show that the protocol is non-
interactive zero-knowledge.

Q.4 Let P ∗(x) be an algorithm taking x as input, interacting with G and H, and forging a
valid π with probability p. Use the next questions to prove that there is an extractor
who can run P ∗ once to extract a witness w for x with probability at least p− negl.

6

Q.4a Transform P ∗ into an algorithm P ′ who either aborts or makes a valid π. It returns
π with probability p, and a complexity similar to P ∗.

Q.4b Construct an extractor E on the previous P ′ such that by observing only one execu-
tion of P ′ with all queries to G and H, either P ′ aborts, or E finds a witness for x, or
E aborts. But the probability that E aborts is bounded by nGnHmtN−1 + nHm

−t,
where nG is the number of queries to G, nH is the number of queries to H, and N
is the size of the range of G.
Hint: say that a query q to H is good if it can be parsed in the form

q = x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t

Consider an extractor which aborts if any fresh query to G returns a value hi,j which
is included in a previous good query q to H. Define another abort condition and
extract a witness in remaining cases.

7

