
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

26.6.2018

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Ciphertext Collision in Semantically Secure Cryptosystems

We consider a public-key cryptosystem (Gen,M,Enc,Dec). We assume perfect correctness,
i.e. for all s and all x ∈M, if (Kp, Ks)← Gen(1s) then

Pr[DecKs(EncKp(x)) = x] = 1

Given a probabilistic polynomial-time adversary A, we consider the following game:

Game ΓA(s):
1: (Kp, Ks)← Gen(1s)
2: X ← A(Kp)
3: Y0 ← EncKp(X)
4: Y1 ← EncKp(X)
5: return 1Y0=Y1

Q.1 Prove that if the cryptosystem is IND-CPA secure, then Pr[ΓA(s)→ 1] is negligible.
Hint: construct an IND-CPA adversary with advantage related to Pr[ΓA(s)→ 1].

We define an IND-CPA adversary as follows:

Algorithm B(s):
1: receive Kp

2: run X1 ← A(Kp)
3: pick X0 ∈M such that X0 ̸= X1

4: send X0, X1, receive Y
5: Y ′ ← EncKp(X1)
6: return 1Y=Y ′

If Y is the encryption of X1, the IND-CPA game outputs 1 with probability
Pr[ΓA(s) → 1]. If Y is the encryption of X0, we cannot have Y = Y ′, so
the game outputs 1 with probability zero. Hence, the advantage of B is exactly
Pr[ΓA(s)→ 1]. Due to IND-CPA security, this is negligible.

2 Non-Malleability in Adaptive Security

This exercise is inspired from Bellare-Desai-Pointcheval-Rogaway, Rela-
tions Among Notions of Security for Public-Key Encryption Schemes,
CRYPTO 1998, LNCS vol. 1462, Springer.

We consider a public-key cryptosystem (Gen,M,Enc,Dec). We assume perfect correctness,
i.e. for all s and all x ∈M, if (Kp, Ks)← Gen(1s) then

Pr[DecKs(EncKp(x)) = x] = 1

Given an adversary in two parts A = (A1,A2), a bit b ∈ {0, 1}, and the security
parameter s, we define the IND-CCA game as follows:

Game IND-CCAb
A(s)

1: (Kp, Ks)← Gen(1s)

2: (X0, X1, σ)← AO1(·)
1 (Kp) ▷ σ is a “state” for A1 to transmit data to A2

3: Y ← EncKp(Xb)

4: b′ ← AO2(·)
2 (σ, Y)

5: return b′

where the oracles O1 and O2 are defined as follows:

Oracle O1(y):
1: return DecKs(y)

Oracle O2(y):
2: if y = Y then
3: abort the game
4: end if
5: return DecKs(y)

We define the advantage

AdvIND-CCAA (s) = Pr[IND-CCA1
A(s)→ 1]− Pr[IND-CCA0

A(s)→ 1]

We say that the cryptosystem is IND-CCA secure if for all probabilistic polynomial time
(PPT) adversary A, AdvIND-CCAA (s) is negligible.

Q.1 The definition of IND-CCA security which was given in the course (Def.5.5 on p.55–
56 in the lecture notes, or slide p.404) was based on an interactive game between
an adversary and a challenger. Prove that the two styles of definition for IND-CCA
security are equivalent. (Carefully construct (A1,A2) from an interactive adversary
and an interactive adversary from (A1,A2).)

2

In the interactive-style definition, the interactive adversary A′ receives a public
key, makes decryption queries, submit two plaintexts, get a ciphertext, makes
new decryption queries, and produces a bit. We define A′ from (A1,A2) as
follows:

Algorithm A′

1: wait until Kp is received
2: simulate A1(Kp); any query to O1 by this simulation is done by making

decryption queries to the challenger
3: the simulation ends by producing (X0, X1, σ)
4: submit (X0, X1) to the challenger and get Y in return
5: simulate A2(σ, Y); any query to O2 by this simulation is done by making

decryption queries to the challenger
6: the simulation ends by producing b′

7: return b′

Clearly, the IND-CCA game with (A1,A2) is perfectly simulated by the inter-
active game with A′. Hence, the advantages match.
Conversely, given an interactive adversary A′, we define (A1,A2) as follows:

Algorithm A1(Kp)
1: simulate A′ who starts by receiving Kp; any decryption query defines a

query to O1 and the simulated answer to query is made from the answer
to the oracle

2: at some point, A′ issues (X0, X1), we let σ be the state of the simulation
3: return (X0, X1, σ)

Algorithm A2(σ, Y)
4: resume the simulation of A′ from state σ, by starting from the reception of

Y ; any decryption query defines a query to O2 and the simulated answer
to query is made from the answer to the oracle

5: the simulation ends by releasing a bit b′

6: return b′

Again, the simulation is perfect. Hence, the advantages match.

Q.2 Let A = (A1,A2) be an IND-CCA adversary. We define another IND-CCA adversary as
follows:

Algorithm BO1(·)
1 (Kp)

1: simulate AO1(·)
1 (Kp)→ (X0, X1, σ)

2: if X0 = X1 then
3: set σ′ ← (σ, 1)
4: pick an arbitrary X such that X ̸= X1

5: return (X,X1, σ
′)

6: else
7: set σ′ ← (σ, 0)
8: return (X0, X1, σ

′)

3

9: end if
Algorithm BO2(·)

2 (σ′, Y)
10: parse σ′ = (σ, c)
11: if c = 1 then
12: return 0
13: else
14: simulate AO2(·)

2 (σ, Y)→ b′

15: return b′

16: end if
Prove that

AdvIND-CCAA (s) = AdvIND-CCA
B (s)

Deduce that we can always assume X0 ̸= X1 in an IND-CCA adversary.

Let E be the event that X0 = X1 with adversary A. We have

Pr[IND-CCA1
A(s)→ 1|E] = Pr[IND-CCA0

A(s)→ 1|E]

thus

AdvIND-CCAA (s) = Pr[IND-CCA1
A(s)→ 1,¬E]− Pr[IND-CCA0

A(s)→ 1,¬E]

We have

Pr[IND-CCAb
B(s)→ 1] = Pr[IND-CCAb

A(s)→ 1,¬E]

hence
AdvIND-CCAA (s) = AdvIND-CCA

B (s)

We now define the NM-CCA game (for non-malleability) as follows:

Game NM-CCAb
A(s)

1: (Kp, Ks)← Gen(1s)

2: (M,σ)← AO1(·)
1 (Kp) ▷ σ is a “state” which allows A1 to transmit data to A2

3: X0 ←M ▷ M is a sampling algorithm defined by A1

4: X1 ←M ▷ we sample two independent plaintexts using M
5: Y ← EncKp(X1)

6: (R, Y ′
1 , . . . , Y

′
n)← A

O2(·)
2 (σ, Y) ▷ R is a poly. algo. returning a boolean

7: X ′
i ← DecKs(Y

′
i), i = 1, . . . , n

8: if Y ̸∈ {Y ′
1 , . . . , Y

′
n} and ⊥ ̸∈ {X ′

1, . . . , X
′
n} and R(Xb, X

′
1, . . . , X

′
n) then

4

9: return 1
10: else
11: return 0
12: end if

We use the same oracles O1 and O2 as for IND-CCA. We define

AdvNM-CCA
A (s) = Pr[NM-CCA1

A(s)→ 1]− Pr[NM-CCA0
A(s)→ 1]

We say that the cryptosystem is NM-CCA secure if for all probabilistic polynomial time
(PPT) adversary A, AdvNM-CCAA (s) is negligible.

The goal of this exercise is to show the equivalence between NM-CCA security and
IND-CCA security.

Q.3 We assume thatM has a group structure (additively denoted), with at least two dif-
ferent elements 0 and 1, 0 being neutral. Assume that there is a polynomial algorithm
Inc such that for all s,

Pr
[
DecKs(IncKp(EncKp(X))) = X + 1

]
= 1

for (Kp, Ks) ← Gen(1s). By constructing an adversary A = (A1,A2), prove that the
cryptosystem is not NM-CCA secure.

(The precision of the proof is important.)

HINT: use M sampling in a set of two different plaintexts and R defined by R(X,X ′) =
1X′=X+1.

5

Algorithm AO1(·)
1 (Kp)

1: pick z, z′ ∈M such that z ̸= z′

2: define M sampling in {z, z′} with uniform distribution
3: return (M,Kp) ▷ we set σ = Kp

Algorithm AO2(·)
2 (Kp, Y)

4: Y ′ ← IncKp(Y)
5: define R by R(X,X ′) = 1X′=X+1

6: return (R, Y ′)

Since 0 ̸= 1 in M, we have that DecKs(Y
′) = DecKs(Y) + 1 ̸= DecKs(Y) so

Y ′ ̸= Y . We further have DecKs(Y
′) ̸= ⊥. So, the outcome of the game is

NM-CCAb
A(s) = R(Xb,DecKs(Y

′)) = R(Xb, X1 + 1) = 1X1+1=Xb+1 = 1X1=Xb

thanks to the group property.
In the NM-CCA game, if M picks two identical plaintexts X0 = X1, then the
outcome of the game is always 1 no matter what is b. If X0 ̸= X1, the outcome
of the game is 1b=1. Hence

Pr[NM-CCA1
A(s)→ 1] = 1

and

Pr[NM-CCA0
A(s)→ 1] =

1

2

Therefore, we have

AdvNM-CCA
A (s) =

1

2

Q.4 Given an NM-CCA adversary A = (A1,A2), we construct an IND-CCA adversary B =
(B1,B2) as follows:

Algorithm BO1(·)
1 (Kp)

1: simulate AO1(·)
1 (Kp)→ (M,σ)

2: sample z0 ←M
3: sample z1 ←M
4: set σ′ ← (z0, z1, σ)
5: return (z0, z1, σ

′)

Algorithm BO2(·)
2 (σ′, Y)

6: parse σ′ = (z0, z1, σ)

7: simulate AO2(·)
2 (σ, Y)→ (R, Y ′

1 , . . . , Y
′
n)

8: for i = 1, . . . , n do
9: if Y = Y ′

i then return 0
10: X ′

i ← O2(Y
′
i)

6

11: if X ′
i = ⊥ then return 0

12: end for
13: compute b′ ← R(z1, X

′
1, . . . , X

′
n)

14: return b′

Prove that

AdvIND-CCAB (s) = AdvNM-CCA
A (s)

Deduce that IND-CCA security implies NM-CCA security.

We first observe that since we check that Y ̸= Y ′
i , there is no problem to query

O2(Y
′
i). By denoting X1 = zb and X0 = z1−b, we can see that the IND-CCAb

B
game is a perfect simulation of the NM-CCAb

A game (with some steps moved
from the core game or adversary and decryption replaced by O2). Hence

IND-CCAb
B = NM-CCAb

A

thus
AdvIND-CCA

B (s) = AdvNM-CCA
A (s)

Q.5 We assume thatM has at least four elements.
Given an IND-CCA adversary A = (A1,A2), we construct an NM-CCA adversary B =
(B1,B2) as follows:

Algorithm BO1(·)
1 (Kp)

1: simulate AO1(·)
1 (Kp)→ (z0, z1, σ)

2: define M sampling in {z0, z1} with uniform distribution
3: set σ′ ← (σ,Kp, z0, z1)
4: return (M,σ′)

Algorithm BO2(·)
2 (σ′, Y)

5: parse σ′ = (σ,Kp, z0, z1)
6: take an injective function T on M such that T (z0) ̸∈ {z0, z1} and T (z1) ̸∈
{z0, z1}

7: simulate AO2(·)
2 (σ, Y)→ b′

8: Y ′ ← EncKp(T (zb′))
9: define R(X,X ′) = 1T (X)=X′

10: return (R, Y ′)

Prove that

AdvNM-CCAB (s) =
1

2
AdvIND-CCA

A (s)

Deduce that NM-CCA security implies IND-CCA security.
HINT1: assume without loss of generality that z0 ̸= z1
HINT2: compute Pr[X0 = zb′], Pr[X1 = zb′|X1 = z1], and Pr[X1 = zb′|X1 = z0].

7

Using Q.2, we can always transform the adversary to obtain z0 ̸= z1. So, we
assume z0 ̸= z1 without loss of generality.
Due to correctness, we note that no decryption abort, so the outcome is

NM-CCAb
B(s) = 1R(Xb,DecKs (Y

′))=1,Y ̸=Y ′ = 1R(Xb,T (zb′))=1,Y ̸=Y ′ = 1T (Xb)=T (zb′),Y ̸=Y ′

where Y is an encryption of X1 and Y ′ is an encryption of T (zb′). Given the
assumptions on T , we always have X1 ̸= T (zb′). Due to the correctness of
decryption, we deduce that we always have Y ̸= Y ′. Due to injectivity, we
deduce

Pr[NM-CCAb
B(s) = 1] = Pr[Xb = zb′]

Hence,
AdvNM-CCAB (s) = Pr[X1 = zb′]− Pr[X0 = zb′]

We have
AdvNM-CCAB (s) = Pr[X1 = zb′]− Pr[X0 = zb′]

Since b′ only depends on X1, X0 is independent from zb′ so Pr[X0 = zb′] =
1
2

(because z0 ̸= z1). Similarly, we have Pr[X1 = zb′|X1 = zc] = Pr[b′ = c|X1 =
zc] for c ∈ {0, 1}. Thus, we have

Pr[X1 = zb′|X1 = z1] = Pr[IND-CCA1
A(s) = 1]

Pr[X1 = zb′|X1 = z0] = 1− Pr[IND-CCA0
A(s) = 1]

Since Pr[X1 = z0] = Pr[X1 = z1] =
1
2
,

Pr[X1 = zb′] =
Pr[IND-CCA1

A(s) = 1] + 1− Pr[IND-CCA0
A(s) = 1]

2

Therefore

AdvNM-CCAB (s) =
1

2

(
Pr[IND-CCA1

A(s) = 1]− Pr[IND-CCA0
A(s) = 1]

)
Therefore

AdvNM-CCAB (s) =
1

2
AdvIND-CCA

A (s)

8

3 Unruh Transform from Σ to NIZK

This exercise is inspired from Unruh, Non-Interactive Zero-Knowledge Proofs
in the Quantum Random Oracle Model, EUROCRYPT 2015, LNCS vol. 9057,
Springer.

We consider a Σ protocol (P, V) for a relation R. We let E be the set of challenges. Given
some parameters t and m ≥ 2, we define the following non-interactive zero-knowledge proof
(NIZK), with input (x,w) such that R(x,w) holds:

Algorithm Proof(x,w):
1: for i = 1 to t do
2: pick a sequence of fresh coins ρi
3: set ai ← P (x,w; ρi)
4: for j = 1 to m do
5: pick ei,j ∈ E − {ei,1, . . . , ei,j−1} at random
6: set zi,j ← P (x,w, ei,j; ρi)
7: set hi,j ← G(zi,j)
8: end for
9: end for

10: set h← H(x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t)
11: set (J1, . . . , Jt)← h
12: set zi = zi,Ji for i = 1, . . . , t
13: set π = (ai, (ei,j, hi,j)j=1,...,m, zi)i=1,...,t

14: return π

This algorithm uses two random oracles G and H. Oracle H is assumed to return a t-
tuple of integers between 1 and m. We use the following verification algorithm (with some
missing step):

Algorithm Verify(x, π):
1: parse π = (ai, (ei,j, hi,j)j=1,...,m, zi)i=1,...,t

2: set h← H(x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t)
3: set (J1, . . . , Jt)← h
4: verify · · ·
5: verify V (x, ai, ei,Ji , zi) for i = 1, . . . , t
6: verify hi,Ji = G(zi) for i = 1, . . . , t
7: return 1 if all verifications passed

Q.1 By taking the verification with the missing step, give an algorithm to forge a proof
given x but without the knowledge of w.

Which step should be added to have a sound proof?

9

We use the simulator of the Σ protocol and all ei,j equal:

Algorithm Forge(x):
1: pick e ∈ E at random
2: (a, e, z)← S(x, e)
3: set ai = a for i = 1, . . . , t
4: set ei,j = e for i = 1, . . . , t, j = 1, . . . ,m
5: set zi,j = z for i = 1, . . . , t, j = 1, . . . ,m
6: set hi,j = G(z) for i = 1, . . . , t, j = 1, . . . ,m
7: set h← H(x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t)
8: set (J1, . . . , Jt)← h
9: set zi = zi,Ji for i = 1, . . . , t

10: set π = (ai, (ei,j, hi,j)j=1,...,m, zi)i=1,...,t

11: return π

It is clear that the output π passes the verification with the missing step.
The missing step is

1: for i = 1 to t do
2: verify that ei,1, . . . , ei,m are pairwise different
3: end for

Q.2 With the new verification step from the last question, give an algorithm with complexity
O(mt) to forge a valid π from x but without w.

10

We try to predict the index of the challenges which will be verified and use the
simulator of the Σ protocol. We proceed as follows:

Algorithm Forge(x):
1: repeat
2: for i = 1 to t do
3: pick Ji ∈ {1, . . . ,m}
4: pick ei,Jj ∈ E at random
5: (ai, ei,Ji , zi)← S(x, ei,Ji)
6: for j = 1 to m do
7: if j ̸= Ji then
8: pick ei,j ∈ E − {ei,1, . . . , ei,j−1, ei,Ji} at random
9: set zi,j at random

10: set hi,j ← G(zi,j)
11: end if
12: end for
13: end for
14: set h← H(x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t)
15: until (J1, . . . , Jt) = h
16: set zi = zi,Ji for i = 1, . . . , t
17: set π = (ai, (ei,j, hi,j)j=1,...,m, zi)i=1,...,t

18: return π

Since h randomly picks J1, . . . , Jt, each iteration succeeds with probability m−t.
Hence, we need O(mt) iterations until we succeed.

Q.3 Construct a simulator in the random oracle model to show that the protocol is non-
interactive zero-knowledge.

11

If finding a witness is easy, the problem is trivial: we just use the easy-to-find
witness to simulate the proof as Proof.
If finding the witness is hard, the simulator works like in the previous question.

Algorithm Simulate(x):
1: for i = 1 to t do
2: pick Ji ∈ {1, . . . ,m}
3: pick ei,Jj ∈ E at random
4: (ai, ei,Ji , zi)← S(x, ei,Ji)
5: set hi,Jj ← G(zi,Jj) ▷ simulate G
6: for j = 1 to m do
7: if j ̸= Ji then
8: pick ei,j ∈ E − {ei,1, . . . , ei,j−1, ei,Ji} at random
9: set hi,j at random

10: end if
11: end for
12: end for
13: set h← (J1, . . . , Jm)
14: set h = H(x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t) ▷ simulate H
15: set zi = zi,Ji for i = 1, . . . , t
16: set π = (ai, (ei,j, hi,j)j=1,...,m, zi)i=1,...,t

17: return π

We should show that a limited distinguisher receiving π and playing with the
simulator of G and H cannot distinguish this π from a genuine one. For this,
we should argue that it cannot find the correct zi,j for j ̸= Ji, except with
negligible probability (because he would, together with ai, ei,Ji, and zi,Ji, be
able to extract a witness with the Σ extractor, which is assumed to be hard).
Without being able to query G with the right zi,j, the value hi,j is free. Thus, the
distinguisher cannot see if hi,j was randomly selected by the simulator without
knowing zi,j or randomly selected by G.

Q.4 Let P ∗(x) be an algorithm taking x as input, interacting with G and H, and forging a
valid π with probability p. Use the next questions to prove that there is an extractor
who can run P ∗ once to extract a witness w for x with probability at least p− negl.

Q.4a Transform P ∗ into an algorithm P ′ who either aborts or makes a valid π. It returns
π with probability p, and a complexity similar to P ∗.

The algorithm P ′(x) first runs P ∗(x) and obtain π. Then, it parses π =
(ai, (ei,j, hi,j)j=1,...,m, zi)i=1,...,t and runs Verify(x, π). If verification fails, P ′

aborts. Otherwise, it returns π.
Clearly, the probability of success is the same and the complexity is similar.
Note that P ′ always queries H(x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t) = (J1, . . . , Jt). If
also queries G(zi) = hi,Ji for every i.

12

Q.4b Construct an extractor E on the previous P ′ such that by observing only one execu-
tion of P ′ with all queries to G and H, either P ′ aborts, or E finds a witness for x, or
E aborts. But the probability that E aborts is bounded by nGnHmtN−1 + nHm

−t,
where nG is the number of queries to G, nH is the number of queries to H, and N
is the size of the range of G.
Hint: say that a query q to H is good if it can be parsed in the form

q = x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t

Consider an extractor which aborts if any fresh query to G returns a value hi,j which
is included in a previous good query q to H. Define another abort condition and
extract a witness in remaining cases.

We consider an execution of P ′ with all its queries to G and H.
Let q be a fresh query to H by P ′. We say that q is a good fresh query if q
parses into some q = x, (ai, (ei,j, hi,j)j=1,...,m)i=1,...,t such that for every i, all
ei,j are pairwise different. So, q defines a sequence of ai, and arrays of ei,j and
hi,j.
Note that if P ′ succeeds to forge a valid π, there must be a good fresh query q
which matches the content of π.
If any fresh query to G after the query q to H returns one of the values hi,j

(there are mt of them), the extractor aborts. So, the probability to abort for
this case is bounded by nGnHmtN−1.
For each good fresh q, we define Jq(i) as the set of j such that hi,j was returned
by G at some point in the past. (Note that unless the extractor aborts, there
won’t be any future query to G returning hi,j.) We let J ′

q(i) be the subset of
Jq(i) such that there exists one query zi,j to G which returned hi,j and satisfying
the condition V (x, ai, ei,j, zi,j). If there is any i such that J ′

q(i) has at least two
elements, we can use the Σ extractor to get a witness for x.
Now, we consider the case where for all i, J ′

q(i) has at most one element. When
H returns (J1, . . . , Jt) to the fresh query q, if we have that Ji ∈ J ′

q(i) for all
i, then we make the extractor abort. Clearly, the probability this happens is
bounded by m−t. Applying this to all queries to H, the probability to abort is
bounded by nm−t.
If the extractor does not abort and P ′ succeeds to make a valid π, we note that
there is a good query q to H made by the verification. We take the fresher
query equal to q. We also note that for all i, the verification in P ′ makes a
query G(zi) = hi,Ji for each i. So, zi cannot be a fresh query and we must have
Ji ∈ J ′

q(i) for all i. Hence, either E succeeded to extract a witness or it aborted
on that fresh good query.

13

