Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

26.6.2018

— duration: 3h

— any document allowed

— a pocket calculator is allowed

— communication devices are not allowed

— the exam invigilators will not answer any technical question during the exam
— readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Ciphertext Collision in Semantically Secure Cryptosystems

We consider a public-key cryptosystem (Gen, M, Enc, Dec). We assume perfect correctness,
i.e. for all s and all z € M, if (K,, K) < Gen(1°) then

Pr[Deck, (Encg,(z)) = x] =1
Given a probabilistic polynomial-time adversary A, we consider the following game:

Game 4(s):
1. (K, K;) < Gen(1%)
2: X +— A(Kp)
3: Yy EncKp(X)
4: Yi — EncKp(X)
5. return ly,_y,
Q.1 Prove that if the cryptosystem is IND-CPA secure, then Pr[l4(s) — 1] is negligible.
Hint: construct an IND-CPA adversary with advantage related to Pr[l4(s) — 1].

We define an IND-CPA adversary as follows:
Algorithm B(s):
- recewe I,
run X; A(K,)
pick Xo € M such that Xy # X4
send Xg, X1, receive Y
Y" < Encg, (X1)
6: return ly_y
If Y s the encryption of Xy, the IND-CPA game outputs 1 with probability
Pr[l4(s) — 1]. If Y is the encryption of Xy, we cannot have Y =Y’ so
the game outputs 1 with probability zero. Hence, the advantage of B is exactly
Pr[l4(s) — 1]. Due to IND-CPA security, this is negligible.

2 Non-Malleability in Adaptive Security

This exercise is inspired from Bellare-Desai-Pointcheval-Rogaway, Rela-
tions Among Notions of Security for Public-Key Encryption Schemes,
CRYPTO 1998, LNCS vol. 1462, Springer.

We consider a public-key cryptosystem (Gen, M, Enc, Dec). We assume perfect correctness,
i.e. for all s and all z € M, if (K,, K) < Gen(1°) then

Pr[Deck, (Encg,(z)) = x] =1

Given an adversary in two parts A = (A;, A), a bit b € {0,1}, and the security
parameter s, we define the IND-CCA game as follows:

Game IND-CCA’(s)

. (K, K;) < Gen(1%)

2: (Xo, X1,0) + A?l(')(Kp) > o is a “state” for A; to transmit data to A,
3 Y «+ EncKp(Xb)

40— A9 (6,Y)

5. return b’

—_

where the oracles O and O, are defined as follows:

Oracle O (y):
1: return Deck_(y)
Oracle O, (y):
2: if y =Y then
3 abort the game
4: end if
5: return Decg, (y)

We define the advantage
Adv'I{P"““A(5) = Pr[IND-CCAY,(s) — 1] — Pr[IND-CCAY(s) — 1]

We say that the cryptosystem is IND-CCA secure if for all probabilistic polynomial time
(PPT) adversary A, Adv'yP"““A(5s) is negligible.

Q.1 The definition of IND-CCA security which was given in the course (Def.5.5 on p.55—
56 in the lecture notes, or slide p.404) was based on an interactive game between
an adversary and a challenger. Prove that the two styles of definition for IND-CCA
security are equivalent. (Carefully construct (A;, As) from an interactive adversary
and an interactive adversary from (A;,.45).)

Q.2 Let A=

In the interactive-style definition, the interactive adversary A’ receives a public
key, makes decryption queries, submit two plaintexts, get a ciphertext, makes
new decryption queries, and produces a bit. We define A" from (A1, Az) as
follows:

Algorithm A’

1: wait until K, is received

2: simulate Ay (K),); any query to Oy by this simulation is done by making
decryption queries to the challenger

3: the simulation ends by producing (Xo, X1,0)

4: submit (Xo, X1) to the challenger and get'Y in return

5: simulate As(0,Y); any query to Oy by this simulation is done by making
decryption queries to the challenger

6: the simulation ends by producing b

7. return b/

Clearly, the IND-CCA game with (Ay, Ay) is perfectly simulated by the inter-
active game with A’. Hence, the advantages match.
Conversely, given an interactive adversary A, we define (A1, As) as follows:

Algorithm A,(K,)

1: simulate A" who starts by receiving K,; any decryption query defines a
query to Oy and the simulated answer to query is made from the answer
to the oracle

2: at some point, A’ issues (Xo, X1), we let o be the state of the simulation

3: return (Xo, X1, 0)

Algorithm Ay(o,Y)

4: resume the simulation of A" from state o, by starting from the reception of]
Y'; any decryption query defines a query to Oy and the simulated answen
to query is made from the answer to the oracle

5: the simulation ends by releasing a bit b/

6: return t/

Again, the simulation is perfect. Hence, the advantages match.

follows:

Algorithm BV (K,)
1: simulate Aol((K,) = (Xo, X1,0)
2. if Xy = X, then
3: set o’ < (0,1)
pick an arbitrary X such that X # X;
return (X, X;,0')
else
set o’ < (0,0)
return (X, X;,0)

(A, As) be an IND-CCA adversary. We define another IND-CCA adversary as

9: end if
Algorithm 555",)
10: parse o' = (o, c)
11: if ¢ =1 then
12: return 0
13: else
14: simulate AS* (0, Y) — ¥/
15: return b’
16: end if

Prove that

Adv'}l\'D_CCA(s) = Adv'l'g\'D_CCA(S)

Deduce that we can always assume X, # X7 in an IND-CCA adversary.

Let E be the event that Xo = X1 with adversary A. We have
Pr[IND-CCA!,(s) — 1|E] = Pr[IND-CCAY(s) — 1|E]
thus
Adv'{P"A(s) = Pr[IND-CCAY(s) — 1,—E] — Pr[IND-CCA%(s) — 1, FE]
We have
Pr[IND-CCA%(s) — 1] = Pr[IND-CCAY(s) — 1,-F]

hence
Adv'ﬁ'D'CCA(s) = Adv'L'g\'D'CCA(s)

We now define the NM-CCA game (for non-malleability) as follows:
Game NM-CCA®(s)

(K,, K;) < Gen(1°)
(M, o) + .A?l(')(Kp) > o is a “state” which allows A; to transmit data to A

Xo+— M > M is a sampling algorithm defined by A,
X1+ M > we sample two independent plaintexts using M
Y < Encg,(X4)

(R,Y{,....Y)) « A?Q(')(a, Y) > R is a poly. algo. returning a boolean

X! < Decg,(Y/),i=1,...,n
it Y ¢{Y/,....Y } and L & {X{,..., X} and R(X,, X],...,X]) then

4

9: return 1
10: else

11: return 0
12: end if

We use the same oracles O and Oy as for IND-CCA. We define

AdviM A (s) = Pr[NM-CCAY(s) — 1] — Pr[NM-CCAY(s) — 1]

We say that the cryptosystem is NM-CCA secure if for all probabilistic polynomial time
(PPT) adversary A, Advi{*"““*(s) is negligible.

The goal of this exercise is to show the equivalence between NM-CCA security and
IND-CCA security.

Q.3 We assume that M has a group structure (additively denoted), with at least two dif-
ferent elements 0 and 1, 0 being neutral. Assume that there is a polynomial algorithm
Inc such that for all s,

Pr [Decg, (Inc, (Enck, (X)) = X +1] =1

for (K,, Ks) < Gen(1%). By constructing an adversary A = (A;, Ay), prove that the
cryptosystem is not NM-CCA secure.

(The precision of the proof is important.)

HINT: use M sampling in a set of two different plaintexts and R defined by R(X, X') =
Iyr=x41-

Algorithm A?l(')(Kp)

1: pick z, 2" € M such that z # 2/

2: define M sampling in {z, 2’} with uniform distribution

3: return (M, K,,) > we set 0 = K,
Algorithm A9V (K,,Y)

4 Y 4 Incg, (V)

5: define R by R(X, X") = 1x—x11

6: return (R,Y’)
Since 0 # 1 in M, we have that Decg, (Y') = Deck (Y) + 1 # Deck,(Y) so
Y' #Y. We further have Deck (Y') # L. So, the outcome of the game is

NM—CCA&(S) = R(Xb, DecKS(Y’)) = R(Xb,Xl -+ 1) = 1X1+1=Xb+1 = 1X1=Xb

thanks to the group property.

In the NM-CCA game, if M picks two identical plaintexts Xo = X1, then the
outcome of the game is always 1 no matter what is b. If Xo # X4, the outcome
of the game s 1,—,. Hence

Pr[NM-CCA(s) = 1] =1

and

1
Pr[NM-CCAY(s) — 1] = 3

Therefore, we have

AV CA(s) = %

Q.4 Given an NM-CCA adversary A = (A1, As), we construct an IND-CCA adversary B =
(B1, By) as follows:

Algorithm BY'(K,)
1: simulate A?l(')(Kp) — (M, 0)
2: sample zg < M
3: sample z; < M
4: set o’ < (z0,21,0)
5: return (zo, z1,0”)

Algorithm 555",)
6: parse o’ = (29,21,0)
7. simulate AS*V(0,Y) — (R,Y{,....Y))
g fori=1,...,ndo
9: if Y =Y/ then return 0

10: Xz/ — OQ(Y;/)

11: if X/ =1 then return 0
12: end for
13: compute b/ < R(z1, X],..., X))
14: return b
Prove that
AdvIND-CCA () — AdyNM-CCA ()

Deduce that IND-CCA security implies NM-CCA security.

We first observe that since we check that Y # Y/, there is no problem to query
O,(Y/). By denoting X1 = z, and Xo = 21y, we can see that the IND-CCA%
game 1is a perfect simulation of the NI\/I-CCAZ game (with some steps moved

from the core game or adversary and decryption replaced by Os). Hence
IND-CCAY = NM-CCA",

thus
AdviP A (s) = AdVIMCA(s)

Q.5 We assume that M has at least four elements.
Given an IND-CCA adversary A = (A, Ay), we construct an NM-CCA adversary B =
(B1, By) as follows:
Algorithm B?l(')(Kp)
1: simulate A?l(‘)(Kp) — (20, 21,0)
2: define M sampling in {2y, z;} with uniform distribution
3: set o’ < (o, K, 20, 21)
4: return (M, O')
Algorlthm BV (o', Y)
5: parse 0’ = (0, K,, 29, 21)
6: take an injective function 7 on M such that T'(z9) & {z0,21} and T(z) €&
{z0, 21}
7. simulate AS*V (0, Y) — ¥/
8: Y’ « Encg, (T(2y))
9: define R(X X) 17 T(X)=X
10: return (R,Y")
Prove that

Adng—CCA() 1Ad IND- CCA(S)

Deduce that NM-CCA security implies IND-CCA security.
HINT;: assume without loss of generality that zg # 2
HINT,: compute Pr[Xy = zy], Pr[X] = 2p| X1 = z1], and Pr[X; = 2| X7 = 20].

Using Q.2, we can always transform the adversary to obtain zg # z1. So, we
assume zg # z1 without loss of generality.
Due to correctness, we note that no decryption abort, so the outcome is

NM-CCA}(s) = LR(xXy,Deck, (Y')=1,Y2Y" = LR(X, T(zp)=1,Y2Y" = l7(X})=T(z,), Y £Y"

where Y is an encryption of Xy and Y’ is an encryption of T(zy). Given the
assumptions on T, we always have X1 # T(zy). Due to the correctness of
decryption, we deduce that we always have Y # Y'. Due to injectivity, we

deduce
Pr[NM-CCA%L(s) = 1] = Pr[X}, = 2]

Hence,
AdviyM A (s) = Pr[X) = 2] — Pr[Xo = 2]
We have
AdVgM_CCA(S> = Pr[X; = zy] — Pr[Xy = 2]
Since V' only depends on X1, Xq is independent from zy so Pr[Xg = zy] = 1

(because zy # z1). Similarly, we have Pr[X) = zy| X7 = 2. = Pr[l/ = ¢|X; =
z] for ¢ € {0,1}. Thus, we have

Pr[X; = zy|X; = 2] = Pr[IND-CCAY(s) = 1]
Pr [Xl —Zb/‘Xl —Zo]_l—Pr[lND CCAA()]

Since Pr[X; = 2] = Pr[X) = 2] =

MI)—I

Pr[IND-CCAL(s) = 1] 4+ 1 — Pr[IND-CCAY(s) = 1]

PI‘[Xl = Zb/] = 5
Therefore
1
AdvM A (s) = 3 (Pr[IND-CCAY(s) = 1] — Pr[IND-CCA%(s) = 1))
Therefore

1
Adng-CCA() 2Ad IND- CCA(S)

3 Unruh Transform from Y to NIZK

This exercise is inspired from Unruh, Non-Interactive Zero-Knowledge Proofs
in the Quantum Random Oracle Model, FEUROCRYPT 2015, LNCS vol. 9057,
Springer.

We consider a X protocol (P, V) for a relation R. We let E be the set of challenges. Given
some parameters t and m > 2, we define the following non-interactive zero-knowledge proof
(NIZK), with input (x,w) such that R(z,w) holds:

Algorithm Proof (z, w):

1: fort=1tot do

2: pick a sequence of fresh coins p;

3: set a; < P(z,w;p;)

4: for j =1tomdo

5: pick e;; € E—{ei1,...,e;j_1} at random
6: set 2, < P(z,w, e, ; pi)

T: set h;; < G(2)

8: end for

9: end for

10: set h + H((L’, (CLZ‘, (e,;,j, hi’j)jzl,...,m)izlw.’t)
11: set (Jy,...,Ji) < h

12: set z; = %, g, fori=1,...,¢

13: set m = (ai, (61'7]‘, hi,j)j:l,...,ma Zi)i:l,...,t

14: return 7

This algorithm uses two random oracles G and H. Oracle H is assumed to return a t-
tuple of integers between 1 and m. We use the following verification algorithm (with some
missing step):

Algorithm Verify(z, 7):

verify h; j, = G(z;) for i =1,...,¢
return 1 if all verifications passed

1. parse m = (ai, (6,‘7]‘, hi,j)j:L...,m) Zi)izl,...,t
2: set h < H(w, (ai, (€5, Mij)j=1,..m)i=1,..t)
3 set (Ji,...,Jy) < h

4: verify - -

5. verify V(z, a;, € 5., 2;) for i =1,...,t

6:

7

Q.1 By taking the verification with the missing step, give an algorithm to forge a proof
given x but without the knowledge of w.
Which step should be added to have a sound proof?

We use the simulator of the X protocol and all e; ; equal:
Algorithm Forge(x):

1: pick e € E at random

2: (a,e,z) < S(x,e)

3 seta; =a fori=1,...,t
josetej=efori=1,....t,j=1,....m

5. setzij =z fori=1,...,t,j=1,...,m

6: set h;j =G(2) fori=1,...,t,7=1,...,m
7. set h < H(x, (a;, (€, Nij)j=1,..m)i=1,..t)

8: set (Jy,...,Jy) < h

9: set z; =z g, fori=1,...,t

10: set ™ = (@i, (€55, Rij)j=1,..m» %i)i=1,..t
11: return w
It is clear that the output w passes the verification with the missing step.
The missing step is
1: fori=11tot do
2: verify that €;1,. .., €;m are pairwise different
3. end for

Q.2 With the new verification step from the last question, give an algorithm with complexity
O(m?) to forge a valid 7 from z but without w.

10

We try to predict the index of the challenges which will be verified and use the
simulator of the X protocol. We proceed as follows:
Algorithm Forge(x):
1: repeat
2 fori=11tot do
3 pick J; € {1,...,m}
4 pick e; j;, € E at random
5: (a;, €4, 2i) < S(z, € ,)
6 for j=1tom do
7. if j # J; then
8
9

picke;; € E—{ei1,...,€j-1,€i 5} at random
: set z; ; at random
10: set h; j < G(zi;)
11: end if
12: end for

13: end for

14: set h + H((L’, (CL,’, (67;7]', hi7j)j:l,...,m)i:l,...,t)
15: wntil (Jy, ..., J;) =h

16: set z; = z; g, fori=1,...,¢

17: set ™ = (@i, (€5, Rij)j=1,..ms Zi)im1,..t

18: return m

Since h randomly picks Jy, ..., J;, each iteration succeeds with probability m™".

Hence, we need O(m') iterations until we succeed.

Q.3 Construct a simulator in the random oracle model to show that the protocol is non-
interactive zero-knowledge.

11

If finding a witness is easy, the problem is trivial: we just use the easy-to-find
witness to simulate the proof as Proof.
If finding the witness is hard, the simulator works like in the previous question.

Algorithm Simulate(z):
1: fori=1tot do

2: pick J; € {1,...,m}

3: pick e; 5, € E at random

4 (ai, €.g;,21) < S(x, e ,)

5 set hi g, < G(zi.1,) > simulate G
6: for j=1tom do

7: if j # J; then

8: picke;j € E—{ei1,...,€j-1,€ 5} at random

9: set h;; at random

10: end if

11: end for

12: end for

13: set h < (J1,...,Jm)

14: set h = H(x, (a;, (€, hij)j=t1,..m)i=1,..t) > simulate H
15: set z; =z g, fori=1,...,¢

~
KR

- set ™= (a;, (€4, Nij)j=1,...ms %i)i=1,..t

17: return m

We should show that a limited distinguisher receiving m and playing with the
simulator of G and H cannot distinguish this © from a genuine one. For this,
we should argue that it cannot find the correct z;; for j # J;, except with
negligible probability (because he would, together with a;, e;j,, and z; ., be
able to extract a witness with the X extractor, which is assumed to be hard).
Without being able to query G with the right z; ;, the value h; ; is free. Thus, the
distinguisher cannot see if h; ; was randomly selected by the simulator without
knowing z; ; or randomly selected by G.

Q.4 Let P*(x) be an algorithm taking x as input, interacting with G and H, and forging a
valid m with probability p. Use the next questions to prove that there is an extractor

who can run P* once to extract a witness w for = with probability at least p — negl.

Q.4a Transform P* into an algorithm P’ who either aborts or makes a valid 7. It returns

m with probability p, and a complexity similar to P*.

The algorithm P'(x) first runs P*(x) and obtain w. Then, it parses m =
(ai, (€5, hij)j=t,..ms %i)i=1,.+ and runs Verify(z, 7). If verification fails, P’
aborts. Otherwise, it returns .

Clearly, the probability of success is the same and the complexity is similar.
Note that P always queries H(x, (a;, (€ij, hij)j=1,..m)i=1,..t) = (J1, ..., Jp). If
also queries G(z;) = h; j, for every i.

12

Q.4b Construct an extractor £ on the previous P’ such that by observing only one execu-
tion of P’ with all queries to G and H, either P’ aborts, or E finds a witness for x, or
E aborts. But the probability that £ aborts is bounded by ngngmtN =t 4+ ngm=,
where ng is the number of queries to G, ny is the number of queries to H, and N
is the size of the range of G.
Hint: say that a query ¢ to H is good if it can be parsed in the form

q=2, (az’, (ez‘,j> hi,j)j:l,...,m)i:l,...,t

Consider an extractor which aborts if any fresh query to G returns a value h; ; which
is included in a previous good query ¢ to H. Define another abort condition and
extract a witness in remaining cases.

We consider an execution of P with all its queries to G and H.

Let q be a fresh query to H by P'. We say that q is a good fresh query if q
parses into some q = x, (a;, (€, hij)j=1,..m)i=1,.+ such that for every i, all
ei; are pairwise different. So, q defines a sequence of a;, and arrays of e; ; and
hi,j-

Note that if P' succeeds to forge a valid 7, there must be a good fresh query q
which matches the content of .

If any fresh query to G after the query q to H returns one of the values h; ;
(there are mt of them), the extractor aborts. So, the probability to abort for|
this case is bounded by ngngmtN !,

For each good fresh q, we define J,(i) as the set of j such that h; j was returned
by G at some point in the past. (Note that unless the extractor aborts, there
won’t be any future query to G returning h;;.) We let J/(i) be the subset of
Jo (1) such that there exists one query z; ; to G which returned h; j and satisfying
the condition V (x,a;, €;j, 2). If there is any i such that J;(i) has at least two
elements, we can use the X extractor to get a witness for x.

Now, we consider the case where for all i, J;(i) has at most one element. When
H returns (Ji,...,J;) to the fresh query q, if we have that J; € Ji(i) for all
1, then we make the extractor abort. Clearly, the probability this happens is
bounded by m~t. Applying this to all queries to H, the probability to abort is
bounded by nm™t.

If the extractor does not abort and P’ succeeds to make a valid 7, we note that
there is a good query q to H made by the verification. We take the fresher
query equal to q. We also note that for all i, the verification in P makes a
query G(z;) = h; j, for eachi. So, z; cannot be a fresh query and we must have
Ji € J; (i) for alli. Hence, either E succeeded to extract a witness or it aborted
on that fresh good query.

13

