
Advanced Cryptography — Midterm Exam

Solution

Serge Vaudenay

3.5.2018

– duration: 1h45
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Threshold Implementation to Mitigate Power Cryptanalysis

This exercise is inspired from Vaudenay, Side-Channel Attacks on Thresh-
old Implementations using a Glitch Algebra, CANS 2016, LNCS vol. 10052,
Springer.

We consider a hardware circuit to implement a cryptographic function F mapping k secret
key bits and p input bits to q output bits:

F :{0, 1}k×{0, 1}p−→{0, 1}q
(K , x) 7−→ y

We assume that the circuit is composed of AND gates (denoted by ∧), XOR gates (denoted
by ⊕), and wires. The circuit works following a clock signal. During each time period,
the wires have constant signals and the gates propagate the computations (with a small
latency). Gates normally dissipate no power. So, the total power consumption of a circuit
is normally null during each time period. However, a wire could have a glitch which makes
gates compute more during the time period, trying to follow the glitch in the signal. In
that case, gates dissipate power and may reproduce the glitch with a small latency to
their output. To simplify the analysis, we assume that during each time period, a wire
w represents a bit vw ∈ {0, 1} and has a number of glitches equal to nw. Concretely, we
assume the following behaviors for a gate g : (a, b) → c with input wires a and b and output
wire c:

– for a ∧ gate: vc = vavb and nc = vanb + vbna;
– for a ⊕ gate: vc = (va + vb) mod 2 and nc = na + nb;

– the gate dissipates an energy equal to Hg = nchg, where hg is a constant depending on
the gate g (i.e., hg = h∧ for an AND gate and hg = h⊕ for a XOR gate).

We consider a hardware implementation with a built-in secret K ∈ {0, 1}k which is ran-
domly set up at the beginning, and unknown to the adversary. The goal of the adversary
is to recover K. The adversary can arbitrarily select the input x, get y = F (K, x), and see
the total amount of energy H =

∑
g Hg which is dissipated during each time period. We

assume that the adversary knows the structure of the hardware circuit. We further assume
that nw = 0 for all the input gates except one special wire w0 for which nw0 = 1. The
adversary knows w0 and nw0 as well.

Q.1 To start with a simple example, we assume that w0 is such that vw0 = xi, the ith input
bit in x, and that w0 is an input wire to an AND gate g where the second input wire
is w1 such that vw1 = Kj, the jth bit of K. Show how the adversary can obtain Kj in
this attack model.

Let w2 be the output wire of g. We have nw2 = vw0nw1 +vw1nw0 = xi×0+Kj×
1 = Kj. If nw2 = 0, no glitch propagate to the rest of the circuit so H = 0.
Otherwise, H ≥ nw2hg = Kjh∧. Hence, the adversary deduces Kj = 1H≥h∧.

Q.2 We now consider a special way to compute an AND. Assume we want to compute the
AND between a bit A and a bit B. We first represent A and B by two random pairs
of bits (va1 , va2) and (vb1 , vb2) such that A = va1 ⊕ va2 and B = vb1 ⊕ vb2 . Then, we
evaluate the following formula in a circuit:

c1 = random c2 = (((c1 ⊕ (a1 ∧ b1))⊕ (a1 ∧ b2))⊕ (b1 ∧ a2))⊕ (a2 ∧ b2)

We thus have a circuit with input wires a1, a2, b1, b2 and output wires c1, c2 and gates
as defined by the above formula.

Q.2a Prove that vc1 ⊕ vc2 = A ∧B.

We simplify

vc1 ⊕ vc2 = vc1 ⊕ (((vc1 ⊕ (va1 ∧ vb1))⊕ (va1 ∧ vb2))⊕ (vb1 ∧ va2))⊕ (va2 ∧ vb2)

= (va1vb1 + va1vb2 + vb1va2 + va2vb2) mod 2

= (va1 + va2)(vb1 + vb2) mod 2

= AB

Q.2b Assume that w0 = a1 in the above circuit. Compute H and prove that the adversary
can recover B from H.

Following the above circuit, we split into the following gates:

g1 = a1 ∧ b1 g2 = a1 ∧ b2 g3 = b1 ∧ a2 g4 = a2 ∧ b2
g5 = c1 ⊕ g1 g6 = g5 ⊕ g2 g7 = g6 ⊕ g3 c2 = g7 ⊕ g4

and we compute ng1 = vb1, ng2 = vb2, ng3 = ng4 = 0, ng5 = vb1, and ng6 =
ng7 = nc2 = vb1 + vb2. So,

H = (vb1 + vb2)h∧ + (4vb1 + 3vb2)h⊕

If B = 0, we have vb1 = vb2 which are random, so H = vb1(2h∧ + 7h⊕). If
B = 1, we have vb2 = 1 − vb1 and vb1 random, so H = h∧ + (3 + vb1)h⊕. So,
H can only take 4 different values. The two extreme ones indicate B = 0 and
the two others indicate B = 1.

Q.3 We now represent A = va1 ⊕ va2 ⊕ va3 and B = vb1 ⊕ vb1 ⊕ vb3 , and take the following
circuit

c1 = (a2 ∧ b2)⊕ ((a2 ∧ b3)⊕ (a3 ∧ b2))

c2 = (a3 ∧ b3)⊕ ((a1 ∧ b3)⊕ (a3 ∧ b1))

c3 = (a1 ∧ b1)⊕ ((a1 ∧ b2)⊕ (a2 ∧ b1))

Q.3a Prove that vc1 ⊕ vc2 ⊕ vc3 = A ∧B.

Clearly,

vc1 + vc2 + vc3
≡ va2vb2 + va2vb3 + va3vb2 + va3vb3 + va1vb3 + va3vb1 + va1vb1 + va1vb2 + va2vb1
= (va1 + va2 + va3)(vb1 + vb2 + vb3) (mod 2)

= AB

Q.3b Assume that w0 = a1 in the above circuit. Prove that H = (vb1 + vb2 + vb3)h∧ +
(vb1 + 2vb2 + 2vb3)h⊕.

We compute nai∧bj = vbjnai for all i, j.

nc1 = vb2na2 + vb3na2 + vb2na3

nc2 = vb3na3 + vb3na1 + vb1na3

nc3 = vb1na1 + vb2na1 + vb1na2

We have also three internal XOR. Overall, with na1 = 1 and na2 = na3 = 0,
we obtain

n(a2∧b3)⊕(a3∧b2) = 0

n(a1∧b3)⊕(a3∧b1) = vb3
n(a1∧b2)⊕(a2∧b1) = vb2

nc1 = 0

nc2 = vb3
nc3 = vb1 + vb2

hence
H = (vb1 + vb2 + vb3)h∧ + (vb1 + 2vb2 + 2vb3)h⊕

Q.3c Show that E(H|B = 0) = E(H|B = 1) so, the expected value of H does not depend
on B.

Since H = (vb1 + vb2 + vb3)h∧ + (vb1 + 2vb2 + 2vb3)h⊕, by linearity, E(H|B) =
(E(vb1 |B) +E(vb2 |b) +E(vb3 |B))h∧ + (E(vb1 |B) + 2E(vb2 |B) + 2E(vb3 |B))h⊕.
But E(vbi|B) = 1

2
for every i and B. So, E(H|B) = 3

2
h∧ +

5
2
h⊕. This does not

depend on B.

Q.3d We assume that h⊕ = 4h∧. Study the probability distribution of H when B = 0 and
when B = 1 and prove that the adversary can recover B from H.

For B = 0, we have the following equiprobable cases:

vb1 vb2 vb3 H H/h∧ with h⊕ = 4h∧
0 0 0 0 0
0 1 1 2h∧ + 4h⊕ 18
1 0 1 2h∧ + 3h⊕ 14
1 1 0 2h∧ + 3h⊕ 14

For B = 1, we have the following equiprobable cases:

vb1 vb2 vb3 H H/h∧ with h⊕ = 4h∧
0 0 1 1h∧ + 2h⊕ 5
0 1 0 1h∧ + 2h⊕ 5
1 0 0 1h∧ + 1h⊕ 4
1 1 1 3h∧ + 5h⊕ 13

Clearly, from the value of H, we can see if we are in one case or the other.

2 The Gap Diffie-Hellman Problem

We define three problems: CDH, DDH, and GDH. They are all relative to a public param-
eters setup scheme Gen(1λ) → pp. We assume that pp defines a cyclic group Gpp with
generator gpp (we assume multiplicative notations) of prime order ppp, and an algorithm to
multiply in Gpp.

We define three games below. We say the CDH problem is hard if for every PPT
algorithm A, Pr[CDHA(1

λ) wins] is negligible in the CDH game. We say the DDH problem
is hard if for every PPT algorithm A, the advantage

AdvDDH
A (λ) = Pr[DDHA(1

λ, 1) → 1]− Pr[DDHA(1
λ, 0) → 1]

is negligible in the DDH game. We say the GDHA problem is hard if for every PPT algorithm
A, Pr[GDHA(1

λ) wins] is negligible the GDH game. Essentially, the GDH problem is the CDH
problem with access to an oracle O who can tell if a triplet (gx, gy, gz) satisfies z ≡ xy
(mod ppp). Namely, O(pp, gx, gy, gz) = 1z≡xy (mod ppp). We call such O a perfect DDH oracle.

CDHA(1λ):
1: Gen(1λ)→ pp
2: pick x, y ∈ Zppp uniformly
3: X ← gxpp
4: Y ← gypp
5: Z ← A(pp, X, Y)
6: win if and only if Z = gxypp

DDHA(1λ, b):
1: Gen(1λ)→ pp
2: pick x, y, z ∈ Zppp uniformly
3: if b = 1, overwrite z ← xy
4: X ← gxpp
5: Y ← gypp
6: Z ← gzpp
7: b′ ← A(pp,X, Y, Z)
8: output b′

GDHA(1λ):
1: Gen(1λ)→ pp
2: pick x, y ∈ Zppp uniformly
3: X ← gxpp
4: Y ← gypp
5: Z ← AO(pp, X, Y)
6: win if and only if Z = gxypp

oracle O(pp, A,B,C):
7: compute the discrete logarithm

a ∈ Zppp such that A = gapp
8: C′ ← Ba

9: return 1C=C′

Q.1 Give an example of a generator Gen with which the DDH problem is easy but the CDH
problem is believed to be hard.

Consider Gen(1λ) which generates a random prime number p of λ bits then
finds a generator g of Z∗

p. We define Gpp = Z∗
p, gpp = g, and ppp = p. We

know that the DDH problem is easy in this case using the following distin-
guisher:

A(pp, X, Y, Z):

1: set x ∈ {0, 1} such that (−1)x =
(

X
p

)
2: set y ∈ {0, 1} such that (−1)y =

(
Y
p

)
3: set z ∈ {0, 1} such that (−1)z =

(
Z
p

)
4: return 1z=xy

However, the CDH problem is believed to be hard.

Q.2 Prove that the GDH problem reduces to the CDH problem (i.e., solving CDH implies
solving GDH).

Assuming an oracle S which solves the CDH problem, solving the GDH problem
is trivial: we just define

AO,S(pp, X, Y) = S(pp, X, Y)

without using O.

Q.3 We let O be a perfect DDH oracle. We now assume there exists a PPT distinguisher
D such that for any PPT algorithm G(pp) → (X, Y, Z), if we generate Gen(1λ) → pp
then G(pp) → (X,Y, Z), then D(pp, X, Y, Z) → b, then b = O(pp, X, Y, Z) except with
negligible probability.

Q.3a Prove that for any PPT algorithm A with access to an oracle, then running A with
oracle D or O and the same random coins produces the same result, except with
negligible probability.

Conditioned to that D returned the same result as O for the first i− 1 queries,
the ith query is defined by a PPT algorithm G. Due to the previous question,
the answer will match the one of O except with negligible probability. We have
a polynomially bounded number of queries. So, by induction, the probability
that any query does not match the one of O is negligible.

Q.3b Under the same assumption that D exists, prove that the CDH problem is as hard
as the GDH problem.

We have proven one reduction in the previous question. We then prove that
the CDH problem reduces to the GDH problem.
Assume that S is a GDH oracle, i.e., if O is a perfect DDH oracle, then SO

is a perfect CDH solver. We define A(pp, X, Y) = SD(pp, X, Y). Due to the
previous question, A returns the same as SO, except with negligible probability.
So, 1− Pr[CDHA(1

λ) wins] is negligible.

3 Number of Samples to Distinguish Distributions

A distribution is a function P from a set Z to R such that for all z ∈ Z, we have P (z) ≥ 0
and

∑
z∈Z P (z) = 1. (We implicitly focus on discrete distributions on finite sets Z.)

Given two distributions P and Q, we define

d(P,Q) =
1

2

∑
z∈Z

|P (z)−Q(z)|

as the statistical distance between P and Q. We recall that d is a distance, which means
that for all distributions P , Q, and R, we have d(P,Q) ≥ 0, d(P,Q) = 0 is equivalent to
P = Q, d(P,Q) = d(Q,P), and d(P,R) ≤ d(P,Q) + d(Q,R). We also define

F (P,Q) =
∑
z∈Z

√
P (z)Q(z)

as the fidelity between P and Q. The fidelity F is not a distance but H =
√
1− F is. (This

is the Hellinger distance.) The statistical distance and the fidelity satisfy the Fuchs – van
de Graaf inequality

1− F (P,Q) ≤ d(P,Q) ≤
√

1− F (P,Q)2

Given two distributions P and Q on sets A and B respectively, we define a distribution

R = P ⊗Q on the set A× B by R(a, b) = P (a)Q(b). We define P⊗n =

n times︷ ︸︸ ︷
P ⊗ · · · ⊗ P .

Q.1 For any distributions P, P ′, Q,Q′, prove that F (P ⊗P ′, Q⊗Q′) = F (P,Q)×F (P ′, Q′).

We have

F (P ⊗ P ′, Q⊗Q′) =
∑
z,z′

√
P (z)P ′(z′)Q(z)Q′(z′)

=
∑
z,z′

√
P (z)Q(z)

√
P ′(z′)Q′(z′)

=

(∑
z

√
P (z)Q(z)

)
×

(∑
z′

√
P ′(z′)Q′(z′)

)
= F (P,Q)× F (P ′, Q′)

Q.2 Given a real number t ∈ [0, 1], we let nt be the minimal number of samples n such that
there exists a distinguisher A using n independent and identically distributed samples
to distinguish P from Q such that Adv(A) ≥ t. Prove that for any t, we have

log(1− t2)

2 logF (P,Q)
≤ nt < 1 +

log(1− t)

logF (P,Q)

By definition of nt, we have d(P⊗nt , Q⊗nt) ≥ t and d(P⊗(nt−1), Q⊗(nt−1)) < t.
We have

t ≤ d(P⊗nt , Q⊗nt) ≤
√
1− F (P⊗nt , Q⊗nt)2 =

√
1− F (P,Q)2nt

so
F (P,Q)2nt ≤ 1− t2

This shows the lower bound on nt. Similarly, we have

t > d(P⊗(nt−1), Q⊗(nt−1)) ≥ 1− F (P⊗(nt−1), Q⊗(nt−1)) = 1− F (P,Q)nt−1

so
F (P,Q)nt−1 > 1− t

This shows the upper bound on nt.

Q.3 Let T be a random process mapping an input x ∈ X and some random coins ρ ∈ {0, 1}∗
to an output T (x; ρ) ∈ Y . If X follows a distribution P on X , and the random coins ρ
are independent and following the uniform distribution, we say that T (X; ρ) follows a
distribution P T on Y . Similarly, a distribution Q on X induces a distribution QT on Y .

Prove that d(P T , QT) ≤ d(P,Q).

Given y ∈ Y, let Iy = {(x, ρ) ∈ X × {0, 1}∗;T (x; ρ) = y}. We have

d(P T , QT) =
1

2

∑
y∈Y

∣∣∣∣∣∣
∑

(x,ρ)∈Iy

(P (x) Pr[ρ]−Q(x) Pr[ρ])

∣∣∣∣∣∣
=

1

2

∑
y∈Y

∣∣∣∣∣∣
∑

(x,ρ)∈Iy

(P (x)−Q(x)) Pr[ρ]

∣∣∣∣∣∣
≤ 1

2

∑
y∈Y

∑
(x,ρ)∈Iy

|P (x)−Q(x)|Pr[ρ]

=
1

2

∑
x∈X

∑
ρ∈{0,1}∗

|P (x)−Q(x)|Pr[ρ]

=
1

2

∑
x∈X

|P (x)−Q(x)|

= d(P,Q)

Another way to prove this is to use the equivalence between the statisti-
cal distance and the advantage of the best distinguisher limited to one sam-
ple. We have d(P T , QT) = Adv(A) for some distinguisher A(Y) who gets
one sample Y and produce a bit. Let X ∈ X . We define B(X) as fol-
lows:

1: pick ρ at random
2: output A(T (X; ρ))

Clearly, B is a distinguisher between P and Q and has advantage Adv(B) =
Adv(A). Hence,

d(P T , QT) = Adv(A) = Adv(B) ≤ d(P,Q)

Q.4 Use the previous question to prove that d(P ⊗ P ′, Q⊗Q′) ≤ d(P,Q) + d(P ′, Q′).

HINT: use first the triangular inequality d(P ⊗P ′, Q⊗Q′) ≤ d(P ⊗P ′, Q⊗P ′)+d(Q⊗
P ′, Q⊗Q′).

Since d is a distance, we can use the triangular inequality d(P ⊗P ′, Q⊗Q′) ≤
d(P ⊗P ′, Q⊗P ′)+d(Q⊗P ′, Q⊗Q′). Next, we show that d(P ⊗P ′, Q⊗P ′) ≤
d(P,Q) and d(Q⊗ P ′, Q⊗Q′) ≤ d(P ′, Q′) by the same technique. We show it
only for the first one.
To show d(P ⊗ P ′, Q ⊗ P ′) ≤ d(P,Q), we use a sampling algorithm G(ρ)
which converts random coins ρ into a random variable following the distribution
P ′. Then, we define T (z; ρ) = (z,G(ρ)). We observe that P T = P ⊗ P ′ and
QT = Q ⊗ P ′. So, d(P ⊗ P ′, Q ⊗ P ′) = d(P T , QT) ≤ d(P,Q), following the
previous question.

Q.5 With the notations from Q.2, deduce that nt ≥ t
d(P,Q)

.

We have
t ≤ d(P⊗nt , Q⊗nt) ≤ nt × d(P,Q)

