
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

26.6.2019

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Minimal Number of Samples to Distinguish Distributions

We consider two probability distributions P0 and P1 over a set Z. We denote by d(P0, P1)
the statistical distance between them, which is

d(P0, P1) =
1

2

∑
z∈Z

|P0(z)− P1(z)|

We also define the Hellinger distance

H(P0, P1) =

√
1−

∑
z∈Z

√
P0(z)P1(z)

This is a distance in the sense that we always have H(P0, P1) ≥ 0, H(P0, P1) = 0 ⇐⇒
P0 = P1, and the triangular inequality. We further define the fidelity

F (P0, P1) = 1−H(P0, P1)
2

The Fuchs - van de Graaf inequalities relate d and F as follows

1− F (P0, P1) ≤ d(P0, P1) ≤
√
1− F (P0, P1)2

Given two distributions P and Q, we denote by P ⊗Q the distribution of a pair (X,Y) of
independent variables X and Y such that X follows P and Y follows Q. We also denote

P⊗n =

n times︷ ︸︸ ︷
P ⊗ · · · ⊗ P .

We are interested in distinguishing the two distributions based on a vector of n i.i.d.
samples following one or the other distribution. Given a real number t ∈ [0, 1], we let nt be
the minimal integer such that there exists a distinguisher using nt samples with advantage
at least t.

Q.1 By using an easy bound on the statistical distance, show that for all t, we have

nt ≥
t

d(P0, P1)

Let A be a distinguisher using nt samples with advantage at least t. Due
to the link between advantage and statistical distance, we have Adv(A) ≤
d(P⊗nt

0 , P⊗nt
1), where P⊗n denotes the distribution of a vector of n i.i.d. ran-

dom variables of distribution P . The easy bound on statistical distance says
d(P⊗n

0 , P⊗n
1) ≤ n · d(P0, P1). Hence,

t ≤ Adv(A) ≤ d(P⊗nt
0 , P⊗nt

1) ≤ nt · d(P0, P1)

We deduce nt ≥ t
d(P0,P1)

.

Q.2 Prove that F (P⊗n
0 , P⊗n

1) = F (P0, P1)
n.

HINT: first prove F (P0 ⊗Q0, P1 ⊗Q1) = F (P0, P1)F (Q0, Q1).

We have
F (P0, P1) = 1−H(P0, P1)

2 =
∑
z∈Z

√
P0(z)P1(z)

Hence,

F (P0 ⊗Q0, P1 ⊗Q1) =
∑

(z1,z2)∈Z1×Z2

√
P0(z1)Q0(z2)P1(z1)Q1(z2)

=
∑
z1∈Z1

√
P0(z1)P1(z1)

∑
z2∈Z2

√
Q0(z2)Q1(z2)

= F (P0, P1)F (Q0, Q1)

By induction, we deduce F (P⊗n
0 , P⊗n

1) = F (P0, P1)
n.

Q.3 By writing D1/2(P0∥P1) = −2 · log2 F (P0, P1), prove that

nt ≥
− log2(1− t2)

D1/2(P0∥P1)

HINT: use the same technique as in Q.1 but get rid of d.

2

Using the same technique as Q.1, we have

t ≤ Adv(A) ≤ d(P⊗nt
0 , P⊗nt

1)

We now use the upper bound of d in terms of F to obtain

t ≤ d(P⊗nt
0 , P⊗nt

1) ≤
√

1− F (P⊗nt
0 , P⊗nt

1)2

and, with the multiplicativity of F :

t ≤
√
1− F (P0, P1)2nt

Hence

nt ≥
ln(1− t2)

2 · lnF (P0, P1)
=

− log2(1− t2)

D1/2(P0∥P1)

Q.4 Complete the previous bound by proving

− log2(1− t2)

D1/2(P0∥P1)
≤ nt < 1 +

−2 · log2(1− t)

D1/2(P0∥P1)

HINT: use the second Fuchs - van de Graaf inequality.

We take the best distinguisher B based on nt − 1 samples, we have Adv(B) =
d(P⊗nt−1

0 , P⊗nt−1
1) and Adv(B) ≤ t. Hence,

t ≥ Adv(B) = d(P⊗nt−1
0 , P⊗nt−1

1)

We use the lower bound of d in terms of F to obtain

t > d(P⊗nt−1
0 , P⊗nt−1

1) ≥ 1− F (P⊗nt−1
0 , P⊗nt−1

1)

and, with the multiplicativity of F :

t > 1− F (P0, P1)
nt−1

Hence

nt < 1 +
ln(1− t)

lnF (P0, P1)
= 1 +

−2 · log2(1− t)

D1/2(P0∥P1)

Q.5 Prove that the minimum number n of samples to distinguish P0 from P1 with advantage
at least 1

2
is such that

0.41

D1/2(P0∥P1)
< n < 1 +

2

D1/2(P0∥P1)

3

We apply the previous bound with t = 1
2
and see that log2(1 − t) = −1 and

− log2(1− t2) > 0.41.

4

2 An IND-CCA Variant of the ElGamal Cryptosytem

This exercise is inspired from Cash-Kiltz-Shoup, The Twin Diffie-Hellman
Problem and Applications, EUROCRYPT 2008, LNCS vol. 4965, Springer.

Given a key derivation function H and a correct symmetric encryption scheme E/D which
can be computed in polynomial time, we define the following cryptosystem:

Setup(1s) → pp: generate a group G and its prime order q and define some public param-
eters pp from which we can extract s, q, the neutral element 1, a generator g, and
parameters to be able to make multiplications in polyomially bounded time in terms of
s. We assume that group elements have a unique representation.

Gen(pp) → pk, sk: pick x1, x2 ∈ Zq, compute X1 = gx1 , X2 = gx2 , and define pk =
(pp, X1, X2), sk = (pp, x1, x2).

Enc(pk,m) → ct: pick y ∈ Zq, compute Y = gy, Z1 = Xy
1 , Z2 = Xy

2 , k = H(Y, Z1, Z2),
c = Ek(m), and define ct = (Y, c).

Dec(sk, ct) → m: [to be defined]

We want to prove the IND-CCA security in the random oracle model, which is defined by
the following game Γb with an adversary A and the bit b:

Game Γb

1: pick a function H at random

2: Setup
$−→ pp

3: Gen(pp)
$−→ (pk, sk)

4: AOH,ODec1
1 (pk)

$−→ (pt0, pt1, st)
5: if |pt0| ̸= |pt1| then return 0

6: ct∗
$←− EncOH(pk, ptb)

7: AOH,ODec2
2 (st, ct∗)

$−→ z
8: return z

Oracle OH(input)
1: return H(input)

Oracle ODec1(ct):
2: return DecOH(sk, ct)

Oracle ODec2(ct):
3: if ct = ct∗ then return ⊥
4: return DecOH(sk, ct)

Q.1 Describe the decryption algorithm and prove that we have a correct public-key cryp-
tosystem.

Decryption of ciphertext (Y, c) with secret key (x1, x2) works as follows: We
compute Y x1 = Z ′

1, Y
x2 = Z ′

2, H(Y, Z ′
1, Z

′
2) = k′, and finally Dk′(c) = m′.

Since we can do multiplications in polynomial time, we can exponentiate in
polynomial time using the square-and-multiply algorithm. Hence, we have a
public-key cryptosystem.
We have Z ′

1 = Y x1 = gyx1 = Xy
1 = Z1, Z

′
2 = Y x2 = gyx2 = Xy

2 = Z2, so
k′ = H(Y, Z1, Z2) = k, and finally m′ = Dk(c) = m due to the correctness of
the E/D scheme. Hence, the cryptosystem is correct.

Q.2 Let Γ ′
b be the following variant of Γb:

5

Game Γ ′
b

1: Setup
$−→ pp

2: Gen(pp)
$−→ (pk, sk)

3: (pp, X1, X2)← pk
4: initialize associative array T to empty

5: AOH,ODec1
1 (pk)

$−→ (pt0, pt1, st)
6: if |pt0| ̸= |pt1| then return 0
7: pick y∗ ∈ Zq

8: Y ∗ ← gy
∗
, Z∗

1 ← Xy∗

1 , Z∗
2 ← Xy∗

2

9: k∗ ← OH(Y ∗, Z∗
1 , Z

∗
2)

10: c∗ ← Ek∗(ptb)
11: ct∗ ← (Y ∗, c∗)

12: AOH,ODec2
2 (st, ct∗)

$−→ z
13: return z

Oracle OH(input)
1: if T (input) is not defined then
2: pick T (input) at random
3: end if
4: return T (input)

Oracle ODec1(ct):
5: return DecOH(sk, ct)

Oracle ODec2(ct):
6: (Y, c)← ct
7: if (Y, c) = ct∗ then return ⊥
8: if Y = Y ∗ then return Dk∗(c)
9: return DecOH(sk, ct)

Prove that Pr[Γb → 1] = Pr[Γ ′
b → 1] for all b.

The difference between Γb and Γ ′
b is in

– expanding Enc in the game to define the variables Y ∗ and k∗;
– the simulation of OH by the lazy sampling technique;
– Step 8 of ODec2.
All those changes induce no behavior modification. These are bridging steps.

Q.3 Let Γ ′′
b be a variant of Γ ′

b in which Step 9 of the game is replaced by
9: pick k∗ at random

We define the failure event F that OH is queried with input (Y ∗, Z∗
1 , Z

∗
2) in Γ ′

b at some
time during the game except on Step 9. Prove that |Pr[Γ ′

b → 1]−Pr[Γ ′′
b → 1]| ≤ Pr[F].

The difference between Γ ′
b and Γ ′′

b is that T is not used any more in
Step 9. Hence, T (Y ∗, Z∗

1 , Z
∗
2) is neither set nor checked. If F never occurs,

T (Y ∗, Z∗
1 , Z

∗
2) is never used anywhere else. This, it is the same to query H

with (Y ∗, Z∗
1 , Z

∗
2) and to pick a random k∗. Hence, Γ ′

b and Γ ′′
b are identical

when F does not occur. Due to the difference lemma, we obtain |Pr[Γ ′
b →

1]− Pr[Γ ′′
b → 1]| ≤ Pr[F].

Q.4 We say that E/D is secure if for any PPT algorithm B, the advantage

AdvB = Pr[Γ ∗
1 → 1]− Pr[Γ ∗

0 → 1]

is negligible, with Γ ∗
b defined as follows:

Game Γ ∗
b

1: B1()
$−→ (m0,m1, st)

2: if |m0| ̸= |m1| then return 0
3: pick a random key k∗

4: c∗ ← Ek∗(mb)

5: BOD
2 (st, c∗)

$−→ z
6: return z

Oracle OD(c):
1: if c = c∗ then return ⊥
2: return Dk∗(c)

6

Prove that if E/D is secure, then Pr[Γ ′′
1 → 1]− Pr[Γ ′′

0 → 1] is negligible.

Given the adversary A = (A1,A2) playing in Γ ′′
0 and Γ ′′

1 , we construct an
adversary B = (B1,B2) playing in Γ ∗

0 and Γ ∗
1 .

B1:
1: simulate Γ ′′

A but stop before Step 9
2: set st′ = (st, sk, T, Y ∗)
3: return (pt0, pt1, st

′)

B2(st
′, c∗):

1: st′ → (st, sk, T, Y ∗)
2: ct∗ ← (Y ∗, c∗)
3: simulate A2(st, ct

∗) → z with oracles OH
and ODec2 with a modification in oracle
ODec2: replace Dk∗(c) in Step 8 by an or-
acle call OD(c) to get the result

4: return z

Clearly, the simulation is perfect (in the sense that Γ ∗
b is obtained from Γ ′′

b by
a sequence of bridging steps) and we have Pr[Γ ′′

b → 1] = Pr[Γ ∗
b → 1]. We apply

the security of E/D to obtain the result.

Q.5 We consider the game Γ ′
b from Q.2 and the event F from Q.3. We consider a variant

Γ b of Γ
′
b as follows:

Game Γ b

1: Setup
$−→ pp

2: Gen(pp)
$−→ (pk, sk)

3: (pp, X1, X2)← pk, (pp, x1, x2)← sk
4: initialize associative arrays Good and T to

empty

5: AOH,ODec1
1 (pk)

$−→ (pt0, pt1, st)
6: if |pt0| ̸= |pt1| then return 0
7: pick y∗ ∈ Zq

8: Y ∗ ← gy
∗
, Z∗

1 ← Xy∗

1 , Z∗
2 ← Xy∗

2

9: k∗ ← OH(Y ∗, Z∗
1 , Z

∗
2)

10: c∗ ← Ek∗(ptb)
11: ct∗ ← (Y ∗, c∗)

12: AOH,ODec2
2 (st, ct∗)

$−→ z
13: return z

Oracle OH(input)
1: (Y,Z1, Z2)← input
2: if Z1 = Y x1 and Z2 = Y x2 then
3: if Good(Y) undefined then
4: pick Good(Y) at random
5: end if
6: return Good(Y)
7: else
8: if T (input) is not defined then
9: pick T (input) at random
10: end if
11: return T (input)
12: end if

Oracle ODec1(ct):
13: return DecOH(sk, ct)

Oracle ODec2(ct):
14: (Y, c)← ct
15: if (Y, c) = ct∗ then return ⊥
16: if Y = Y ∗ then return Dk∗(c)
17: return DecOH(sk, ct)

We define the event F in Γ b as the event F in Γ ′
b. Prove that Pr[Γ b → 1] = Pr[Γ ′

b → 1]
and that Pr[F] = Pr[F].

The only change is in setting up a new array Good and in a new OH oracle.
We can see that OH only treats differently the inputs (Y, Z1, Z2) of the form
(Y, Y x1 , Y x2). For each Y , there is one and only one triplet of this form. It does
not matter if we store the output k in T or in Good. Hence, OH implements a
random oracle as well.

7

Q.6 We define the Strong Twin Diffie-Hellman game as follows:

Game STDH:
1: Setup

$−→ pp
2: pick x1, x2 ∈ Zq

3: X1 ← gx1 , X2 ← gx2

4: pick y∗ ∈ Zq

5: Y ∗ ← gy
∗
, Z∗

1 ← Xy∗

1 , Z∗
2 ← Xy∗

2

6: CODTDH(pp, X1, X2, Y
∗)

$−→ (Z1, Z2)
7: return 1Z1=Z∗

1 ,Z2=Z∗
2

Oracle ODTDH(Y,Z1, Z2):
1: return 1Z1=Y x1∧Z2=Y x2

We consider the game Γ b and the event F . Given an adversary A playing the Γ b game,
construct an adversary C playing the STDH game such that

Pr[F] = Pr[STDHC → 1]

HINT: find a way to simulate Γ b without sk.

We define C by simulating the game Γ ′
b until the solution is found.

Ci(pp, X1, X2, Y
∗)

1: pk← (pp, X1, X2)
2: Result← ⊥
3: simulate Γ b from Step 4

– use OD(ct) at the place of
DecOH(sk, ct)

– use a new OH
4: return Result

Oracle OD(ct):
5: (Y, c)← ct
6: if Good(Y) undefined then
7: pick Good(Y) at random
8: end if
9: Good(Y)→ k
10: return Dk(c)

Oracle OH(input)
1: (Y,Z1, Z2)← input
2: if ODTDH(Y,Z1, Z2) = 1 then
3: if Y = Y ∗ then Result← (Z1, Z2)
4: if Good(Y) undefined then
5: pick Good(Y) at random
6: end if
7: return Good(Y)
8: else
9: if T (input) is not defined then
10: pick T (input) at random
11: end if
12: return T (input)
13: end if

The only change in the simulation is that Dec is simulated without knowing sk
by using the Good array. There are also two changes in OH:
– the test of Step 2 is simulated by ODTDH(Y, Z1, Z2) = 1, which is a perfect

simulation without knowing sk.
– the extra Step 3 stores something in Result which was not used before.
The simulation is perfect. Hence, the game Γ b executes the same. When F
happens, we can see in OH that the (Z1, Z2) value corresponding to Y ∗ is stored
in Result. As a matter of fact, this is precisely the answer to the STDH problem.
Hence, Pr[F] = Pr[STDHC → 1].

Q.7 Summarize all what we did and prove that the cryptosystem is IND-CCA secure in
the random oracle model, under the assumption that the strong twin Diffie-Hellman
problem STDH is hard and that the E/D scheme is secure.
NOTE: in a twin exercise, we show STDH is equivalent to CDH.

8

We have
– for all b ∈ {0, 1}, Pr[Γb → 1] = Pr[Γ ′

b → 1],
– for all b ∈ {0, 1}, |Pr[Γ ′

b → 1]− Pr[Γ ′′
b → 1]| ≤ Pr[F],

– Pr[F] = Pr[F],
– Pr[F] = Pr[STDH → 1],
– |Pr[Γ ′′

1 → 1]− Pr[Γ ′′
0 → 1]| ≤ |Pr[Γ ∗

1 → 1]− Pr[Γ ∗
0 → 1]|.

Hence,

|Pr[Γ1 → 1]− Pr[Γ0 → 1]| ≤ 2Pr[STDH → 1] + |Pr[Γ ∗
1 → 1]− Pr[Γ ∗

0 → 1]|

which is negligible, assuming that the strong twin Diffie-Hellman problem is
hard and that E/D is secure. This means that the cryptosystem is IND-CCA
secure.

9

3 Equivalence of CDH and the Strong Twin DH Problems

Note: this is a twin exercise of “An IND-CCA Variant of the ElGamal Cryptosystem”.
However, both exercises are totally independent.

This exercise is inspired from Cash-Kiltz-Shoup, The Twin Diffie-Hellman
Problem and Applications, EUROCRYPT 2008, LNCS vol. 4965, Springer.

We define the Strong Twin Diffie-Hellman STDH game and the classical CDH game as
follows:

Game STDH:
1: Setup

$−→ pp
2: pick x1, x2 ∈ Zq

3: X1 ← gx1 , X2 ← gx2

4: pick y∗ ∈ Zq

5: Y ∗ ← gy
∗
, Z∗

1 ← Xy∗

1 , Z∗
2 ← Xy∗

2

6: AODTDH(pp, X1, X2, Y
∗)

$−→ (Z1, Z2)
7: return 1Z1=Z∗

1 ,Z2=Z∗
2

Oracle ODTDH(Y,Z1, Z2):
8: return 1Z1=Y x1∧Z2=Y x2

Game CDH
1: Setup

$−→ pp
2: pick x, y ∈ Zq

3: X ← gx, Y ← gy

4: B(pp, X, Y)
$−→ Z

5: return 1Z=Y x

Our goal is to prove the equivalence between the two problems.
Here, Setup(1s) → pp is an algorithm which generates a group G and its prime order

q in some public parameters pp. Given pp, we can extract q, the neutral element 1, a
generator g, and parameters to be able to make multiplications in polyomially bounded
time. We assume that group elements have a unique representation.

Q.1 Given an adversary B playing the CDH game, construct and adversary A playing the
STDH game such that Pr[STDH → 1] ≥ Pr[CDH → 1]2.

A(pp, X1, X2, Y
∗):

1: pick r ∈ Zq

2: B(pp, X1, Y
∗)

$−→ Z1

3: B(pp, X2, Y
∗gr)

$−→ Z
4: Z2 ← Y ∗X−r

2

5: return (Z1, Z2)

The uniform r ∈ Zq separates the two runs of B which become independent, but
for pp. If ppp is the probability that CDH yields 1 conditioned to pp, then the
same probability for STDH is p2pp. Hence, the probability that STDH succeeds is
E(p2pp). Thanks to the Jensen inequality, this is greater than E(ppp)

2. Hence,
Pr[STDH → 1] ≥ Pr[CDH → 1]2.

Q.2 We define the following random variables: x, u, v, y, z1, z2 ∈ Zq, x1 = x, and x2 = v −
xu mod q. We assume that (x, u, v) is uniformly distributed in Z3

q and that (y, z1, z2) =
f(x1, x2) for some function f .

10

Q.2a Prove that (x1, x2, u) is uniformly distributed in Z3
q.

The function mapping (x, u, v) to (x1, x2, u) is (x, u, v) 7→ (x, v − xu, u) which
is a permutation of Z3

q. Hence, (x1, x2, u) is also uniform.

Q.2b Prove that

Pr[z1u+z2 = yv|z1 = yx1, z2 = yx2] = 1 , Pr[z1u+z2 = yv|z1 ̸= yx1∨z2 ̸= yx2] ≤
1

q

(where equalities are modulo q).

z1u+ z2 = yv is equivalent to

(z1 − yx1)u+ (z2 − yx2) = 0

Hence, the first equation is quite clear. For the second we recall that x1, x2, u are
independent and that (y, z1, z2) is a function of x1, x2. Hence, u is independent
from all the rest. For any values of x1, x2 giving z1 ̸= yx1, the probability over
u is 1

q
. For any values of x1, x2 giving z1 = yx1 and z2 ̸= yx2, the probability

over u is 0. Hence, for any values of x1, x2 giving z1 ̸= yx1 ∨ z2 ̸= yx2, the
probability over u is at most 1

q
.

Q.3 Given an adversary A playing the STDH game, prove that the following B playing the
CDH game is such that Pr[CDH → 1] ≥ Pr[STDH → 1]− Q

q
where Q is the total number

of queries of A.

B(pp, X, Y):
1: pick u, v ∈ Zq

2: X1 ← X, X2 ← gvX−u

3: simulate A(pp, X1, X2, Y)
$−→ (Z1, Z2)

with oracle O instead of ODTDH
4: return Z1

Oracle O(Ŷ , Ẑ1, Ẑ2)
1: return 1Ẑu

1 Ẑ2=Ŷ v

Let x be the discrete logarithm of X, x1 = x, and x2 = v − xu. The random
variables x, r, s are uniform and independent. Let Ei be the event that the ith
query to O returns 1 but that either Ẑ1 ̸= Ŷ x1 or Ẑ2 ̸= Ŷ x2. Thanks to the
previous question, we have Pr[Ei] ≤ 1

q
. Hence, the probability that at least one

out of the Q total number of queries produce this failure event is bounded by Q
q
.

Except in this failure case, the simulation is perfect. Hence, using the difference
lemma, we obtain the result.

11

