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– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Security of Key Agreement

We consider a key agreement scheme defined by

– one PPT algorithm setup(1s)→ pp which generates public parameters pp;
– two probabilistic polynomially bounded interactive machines A and B with input pp

and producing a secret output K (denoted by KA for A and by KB for B).

Correctness implies that the following game outputs 1 with probability 1.

1: setup(1s)→ pp
2: make A(pp) and B(pp) interact with each other and output KA and KB

3: output 1KA=KB

Q.1 Give a formal definition for the security against key recovery under passive attacks.

Given an adversary A, we consider the following game with security parameter
s.

1: setup(1s)→ pp
2: make A(pp) and B(pp) interact with each other and output KA and KB;

define transcript as the list of exchanged messages
3: run A(pp, transcript)→ K
4: output 1K=KA=KB

The protocol is secure against key recovery under passive attack if for any PPT
adversary A, the above game returns 1 with negligible probability.

Q.2 Formalize how to define the Diffie-Hellman protocol under this setting.



In the Diffie-Hellman protocol, we assume that pp is of form pp = (q, g) where
g generates a (multiplicatively denoted) group of order q. The algorithm A
works as follows:

1: pick a ∈ Z∗
q at random

2: pkA ← ga

3: send pkA
4: receive pkB
5: if pkB ̸∈ ⟨g⟩ − {1} then abort
6: K ← pkaB
7: return K (private output)

The algorithm B works as follows:

1: pick b ∈ Z∗
q at random

2: pkB ← gb

3: receive pkA
4: if pkA ̸∈ ⟨g⟩ − {1} then abort
5: send pkB
6: K ← pkbA
7: return K (private output)

Q.3 Formally prove that the Diffie-Hellman protocol is secure in the sense of the previous
question if and only if the computational Diffie-Hellman problem is hard.
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By plugging the algorithms A and B in the security game, we obtain

1: setup(1s)→ (q, g)
2: pick a ∈ Z∗

q at random
3: pkA ← ga

4: pick b ∈ Z∗
q at random

5: pkB ← gb

6: if pkA ̸∈ ⟨g⟩ − {1} then abort
7: KB ← pkbA
8: if pkB ̸∈ ⟨g⟩ − {1} then abort
9: KA ← pkaB

10: run A(pp, pkA, pkB)→ K
11: output 1K=KA=KB

Clearly, the two if are useless and we always have KA = KB = gab. Hence, the
game simplifies to

1: setup(1s)→ (q, g)
2: pick a ∈ Z∗

q at random
3: pick b ∈ Z∗

q at random
4: run A(q, g, ga, gb)→ K
5: output 1K=gab

which is the computational Diffie-Hellman problem (CDH). An adversary an-
swers 1 in the security game with the same probability as in the CDH game.

Q.4 We now consider security against Alice’s key recovery under active attacks as defined
by the following game:

1: setup(1s)→ pp
2: stA ← pp, finishedA ← false
3: stB ← pp, finishedB ← false
4: run AOA,OB(pp)→ K
5: output 1K=KA and finishedA

OA(x):
6: if finishedA then return
7: stA ← (stA, x)
8: run A(stA) to get private output stA

and next message y
9: if y non-final then return y

10: finishedA ← true
11: KA ← stA
12: return y

And the same for oracle OB. Prove that the Diffie-Hellman protocol is insecure in this
sense.
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The man-in-the-middle attack is breaking the protocol. We consider the adver-
sary:

Input: (q, g)
1: pick c ∈ Z∗

q

2: OA()→ pkA
3: OA(gc)
4: return pkcA

(Note that the interaction with Bob is useless in this security model.)

Q.5 Based on some attacks seen in the course, formalize security against key recovery under
active attacks making KA = KB. Prove that Diffie-Hellman is secure by assuming that
the problem defined by the following game is hard:

1: setup(1s)→ pp = (q, g)
2: pick x, y ∈ Z∗

q

3: B(pp, gx, gy)→ (u, v, w)
4: return 1ux=vy=w and u,v,w∈⟨g⟩ and w ̸=1

where g generates ⟨g⟩ of order q, with neutral element 1.

The output of the security game is now 1K=KA=KB and finishedA and finishedB .
We want to prove that the protocol is secure. Let A by an adversary against
the protocol. We define B as follows:

B(pp, X, Y ):
1: run AOA,OB(pp)→ w and simulate the oracles as follows:

OA(): simulate A choosing X
next OA(x): set v ← x
OB(x): set u← x and simulate B choosing Y

2: return (u, v, w)

When B is put in its game, the simulation of the selection of the public keys of
A and B are perfect. It is also clear that the winning conditions in both games
are equivalent. So, they have the same advantage. If the game that B plays is
hard, then it must be the case that A has a negligible advantage.
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2 Advantage Amplification

LetX1, . . . , Xn, Y1, . . . , Yn be 2n independent Boolean variables. We assume thatX1, . . . , Xn

are identically distributed and that Y1, . . . , Yn are identically distributed. We assume that
the statistical distance between the distributions of Xi and Yj is ε. Given distinguisher,
i.e. a Boolean algorithm A (with unbounded complexity), we define X = A(X1, . . . , Xn)
and Y = A(Y1, . . . , Yn). We are interested in A which maximizes the statistical distance
between the distributions of X and Y . We denote by d the statistical distance and we
identify random variables by their distributions when computing distances, by abuse of
notation.

Q.1 Prove that d(X,Y ) = d((X1, . . . , Xn), (Y1, . . . , Yn)).

We know from the course that for any A

d(X,Y ) ≤ d((X1, . . . , Xn), (Y1, . . . , Yn))

and equality can be reached by using the likelihood ratio. We actually known
that

A(z1, . . . , zn) = 1Pr[X1=z1,...,Xn=zn]<Pr[Y1=z1,...,Yn=zn]

reaches the equality case.

Q.2 Assume that Pr[Xi = 1] = 0.
Q.2a Give the distributions of Xi and Yj.

We have Pr[Xi = 1] = 0 and Pr[Xi = 0] = 1. Due to the statistical distance of
ε, we have Pr[Yj = 1] = ε and Pr[Yj = 0] = 1− ε.

Q.2b Compute d(X,Y ) in terms of ε and n.

We compute the statistical distance by regrouping all (z1, . . . , zn) by their Ham-
ming weight.

d(X,Y ) =
1

2

∑
z1,...,zn

|Pr[X1 = z1, . . . , Xn = zn]− Pr[Y1 = z1, . . . , Yn = zn]|

=
1

2
(1− (1− ε)n) +

1

2

n∑
h=1

(n
h

)
εh(1− ε)n−h

= 1− (1− ε)n

In the sum, only the (0, . . . , 0) case makes the first probability nonzero. This is
the h = 0 case.

Q.2c Give an asymptotic equivalent of the minimal n such that d(X,Y ) ≥ 1
2
in terms of

ε, when ε→ 0.

1− (1− ε)n ≥ 1
2
is equivalent to n ≥ − ln 2

ln(1−ε)
. So, the minimal n is n ∼ ln 2

ε
.
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Q.3 Assume now that Pr[Xi = 1] = 1
2
(1− ε) and Pr[Yi = 1] = 1

2
(1 + ε).

Q.3a Show that A(z1, . . . , zn) = 1z1+···+zn<
n
2
makes d(X,Y ) maximal.

Let h = z1 + · · ·+ zn. We have

Pr[X1 = z1, . . . , Xn = zn] = 2−n(1− ε)h(1 + ε)n−h

Pr[Y1 = z1, . . . , Yn = zn] = 2−n(1 + ε)h(1− ε)n−h

So, Pr[X1 = z1, . . . , Xn = zn] < Pr[Y1 = z1, . . . , Yn = zn] is equivalent to
(1 − ε)h(1 + ε)n−h < (1 + ε)h(1 − ε)n−h, which is equivalent to (1 + ε)n−2h <
(1 − ε)n−2h, which is equivalent to h < n

2
. Hence, the suggested A is actually

equivalent to the optimal algorithm based on the likelihood ratio. We know it
makes d(X,Y ) maximal.

Q.3b Given that Pr[X1 + · · ·+Xn < n
2
] = Pr[Y1 + · · ·+ Yn > n

2
], prove that for n odd, we

have d(X,Y ) = |1− 2Pr[X1 + · · ·+Xn < n
2
]|.

Actually, d(X,Y ) is the advantage which is d(X,Y ) = |Pr[Y1 + · · · + Yn <
n
2
] − Pr[X1 + · · · + Xn < n

2
]|. For n odd, we have Pr[Y1 + · · · + Yn < n

2
] =

1− Pr[Y1 + · · ·+ Yn > n
2
] which gives the answer.

Q.3c Compute the expected value and the variance of X1 + · · ·+Xn.

We have
E(X1 + · · ·+Xn) = n · E(Xi) =

n

2
(1− ε)

and
V (X1 + · · ·+Xn) = n · V (Xi) =

n

4
(1− ε2)

because V (Xi) = E(Xi)(1− E(Xi)).

Q.3d By approximating X1+ · · ·+Xn to a normal distribution, give an asymptotic equiv-
alent to n so that d(X,Y ) is a constant.

For Pr[X1+ · · ·+Xn < n
2
] to be constant, we need n

2
ε and

√
n
4
(1− ε2) of same

order of magnitude. This means n ∼ cste
ε2

.
It is interesting to observe that to amplify the statistical distance with close-
to-unbiased distributions, it is harder than for close-by distributions which are
heavily biased.
Nice solution from a student: we apply the upper-tail Chernoff bound with
δ = ε

1−ε
which says

Pr[X1 + · · ·+Xn > (1 + δ)µ] ≤ e−
δ2

2+δ
µ

hence Pr[X1+ · · ·+Xn > n
2
] ≤ e−

ε2

2(2−ε)
n. So, with n > 4

ε2
, we get Pr[X1+ · · ·+

Xn > n
2
] ≤ e−1.
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