
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

24.5.2022

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Σ Protocol for Discrete Log Equality

We assume that public parameters pp describe a group, how to do operations and compar-
ison in the group, and also give its prime order p. We use additive notation and 0 denotes
the neutral element in the group. We define the relation R((pp, G,X, Y, Z), x) for group
elements G,X, Y, Z and an integer x which is true if and only if G ̸= 0, X = xG, and
Z = xY . We construct a Σ-protocol for R with challenge set Zp. The prover starts by
picking k ∈ Zp with uniform distribution, computing and sending A = kG and B = kY .
Then, the prover gets a challenge e ∈ Zp. The answer is an integer z to be computed in a
way which is a subject of the following question. The final verification is also a subject of
the following question. The protocol looks like this:

Prover Verifier
witness: x instance: (pp, G,X, Y, Z)

(X = xG and Z = xY )
pick k ∈ Zp

A = kG, B = kY
A,B−−−−−−−−−−−−−−−−−−→

e←−−−−−−−−−−−−−−−−−− pick e ∈ Zp

??
z−−−−−−−−−−−−−−−−−−→ ??

Q.1 Inspired by the Schnorr proof, finish the specification of the prover and the verifier.

Essentially, we do a Schnorr proof in the group of (X,Z) pairs. That is, we
prove knowledge of x such that (X,Z) = x(G, Y ). Based on that, the prover
sends (A,B) = k(G, Y ), gets e, and answers by z = k + ex mod p. The final
verification is z(G, Y ) = (A,B)+e(X,Z), i.e. zG = A+eX and zY = B+eZ.
The verifier should verify G ̸= 0 too.



Q.2 Specify the extractor and the simulator.

Given two valid transcripts (A,B, e1, z1) and (A,B, e2, z2) with the same (A,B)
and different e1 ̸= e2, we set

x =
z2 − z1
e2 − e1

mod p

and we prove (X,Z) = x(G, Y ) like in the Schnorr proof.
Given e and a random z, we define (A,B) = z(G, Y ) − e(X,Z) and obtain
a simulated transcript (A,B, e, z) with same distribution, like in the Schnorr
proof:

x(G, Y ) =
1

e2 − e1
(z2(G, Y )− z1(G, Y ))

=
1

e2 − e1
((A,B) + e2(X,Z)− (A,B)− e1(X,Z))

= (X,Z)

Frequent mistake in exams: writing zi = k+ eix is incorrect because the prover
is malicious and there is no way to be sure that zi was computed this way.

Q.3 Fully specify another Σ-protocol for the relation R((pp, G,X, Y, Z, U, V ), (a, b)) which
is true if and only if U = aG+ bY and V = aX + bZ.



By defining a group action (a, b) ∗ ((G,X), (Y, Z)) = a(G,X) + b(Y, Z), we
easily extend the previous protocol: the prover picks (k, k′) ∈ Z2

p, computes and
sends (A,B) = (k, k′)∗ ((G,X), (Y, Z)). The verifier sends a challenge e ∈ Zp.
The prover computes and sends (z, z′) = (k, k′) + e(a, b) mod p. The verifier
checks (z, z′) ∗ ((G,X), (Y, Z)) = (A,B) + e(U, V ).
The protocol looks as follows:

Prover Verifier
witness: a, b instance: (pp, G,X, Y, Z, U, V )

(U = aG+ bY and V = aX + bZ)
pick k, k′ ∈ Zp

A = kG+ k′Y , B = kX + k′Z
A,B−−−−−−−−−−−−−−−−−−→

z = k + ea mod p
e←−−−−−−−−−−−−−−−−−− pick e ∈ Zp

z′ = k′ + eb mod p
z,z′−−−−−−−−−−−−−−−−−−→ verify:

zG+ z′Y = A+ eU
zX + z′Z = B + eV

Given (A,B, e1, z1, z
′
1) and (A,B, e2, z2, z

′
2), the extractor computes a = z2−z1

e2−e1
and b =

z′2−z′1
e2−e1 .

Given e and a random (z, z′), the simulator sets (A,B) = (z, z′) ∗
((G,X), (Y, Z))− e(U, V ).
Common mistake: a similar protocol with k′ = k does not work as it leaks
z′−z
e

= b− a. The simulator should fail.
Another common mistake is to send kG, k′Y , kX, and k′Z which is not zero-
knowledge either. The simulator does not generate the right distribution.



2 Distinguisher for Lai-Massey Schemes

The Lai-Massey scheme is an alternate construction to the Feistel scheme to build a block
cipher from round functions. Let n be the block size and r be the number of rounds. We
denote by ⊕ the bitwise XOR operation over bistrings. Let the Fi be secret functions from
{0, 1}n

2 to itself and π be a fixed public permutation over {0, 1}n
2 . Let x, y ∈ {0, 1}n

2 and
x∥y denote the concatenation of the two bitstrings. We define

φ(F1, . . . , Fr)(x∥y) = φ(F2, . . . , Fr)(π(x⊕ F1(x⊕ y))∥(y ⊕ F1(x⊕ y)))

for r > 1 and

φ(Fr)(x∥y) = (x⊕ Fr(x⊕ y))∥(y ⊕ Fr(x⊕ y))

when there is a single round. In what follows, we assume that the permutation π is defined
by

π(xL∥xR) = (xR∥(xL ⊕ xR))

where xL, xR ∈ {0, 1}n
4 . For example, a 2-round Lai-Massey scheme is represented as

follows:

xL xR yL yR

F1

⊕
⊕

⊕
⊕

⊕
⊕

⊕

F2

⊕
⊕

⊕
⊕

⊕
⊕

Q.1 If φ(F1, . . . , Fr) is the encryption function, what is the decryption function?



We define φ′ for r > 1 by

φ′(Fr, . . . , F1)(x∥y) = ((π−1(x′)⊕ F1(π
−1(x′)⊕ y′))∥(y′ ⊕ F1(π

−1(x′)⊕ y′)))

where φ′(Fr, . . . , F2)(x∥y) = (x′∥y′), and for r = 1 by φ′(F1) = φ(F1). We
prove by induction that (φ(F1, . . . , Fr))

−1 = φ′(Fr, . . . , F1).
This is clear for r = 1. Actually, φ′(F1) = φ(F1) and we can directly see that
(φ(F1) ◦ φ(F1))(x∥y) = x∥y.
Assuming this is true for r − 1 rounds, we show that (φ′(Fr, . . . , F1) ◦
φ(F1, . . . , Fr))(x∥y) = x∥y for any x and y as follows:

(φ′(Fr, . . . , F1) ◦ φ(F1, . . . , Fr))(x∥y)
= ((π−1(x′)⊕ F1(π

−1(x′)⊕ y′))∥(y′ ⊕ F1(π
−1(x′)⊕ y′)))

where

(x′∥y′) = φ′(Fr, . . . , F2) (φ(F2, . . . , Fr)(π(x⊕ F1(x⊕ y))∥(y ⊕ F1(x⊕ y))))

By the induction hypothesis, we have

(x′∥y′) = (π(x⊕ F1(x⊕ y))∥(y ⊕ F1(x⊕ y)))

By substituting x′ and y′ in the above equation, we obtain (φ′(Fr, . . . , F1) ◦
φ(F1, . . . , Fr))(x∥y) = x∥y which proves the property on r rounds.

Q.2 Give a distinguisher between φ(F1) and a random permutation with a single known
plaintext and advantage close to 1. (Compute the advantage.)

We have
φ(F1)(x∥y) = (x⊕ F1(x⊕ y))∥(y ⊕ F1(x⊕ y))

So, if x∥y is a known plaintext and x′∥y′ = φ(F1)(x∥y) is the corresponding
ciphertext, we have

x′ ⊕ y′ = x⊕ y

which is a property being satisfied with probability 2−
n
2 for the random cipher.

Hence, by checking this property, we have a distinguisher with advantage 1 −
2−

n
2 .

Q.3 Give a distinguisher between φ(F1, F2) and a random permutation with two chosen
plaintexts and advantage close to 1. (Compute the advantage.)



We let xL, xR, yL, yR, α, β ∈ {0, 1}n
4 . We assume that xL∥xR∥yL∥yR and (xL⊕

α)∥(xR ⊕ β)∥(yL ⊕α)∥(yR ⊕ β) are the chosen plaintexts. Clearly, the input to
F1 is the same in both messages. We let u∥v denote the common output. The
input and output to π are

π((xL ⊕ u)∥(xR ⊕ v)) = (xR ⊕ v)∥(xL ⊕ xR ⊕ u⊕ v)

and

π((xL ⊕ α⊕ u)∥(xR ⊕ β ⊕ v)) = (xR ⊕ β ⊕ v)∥(xL ⊕ α⊕ xR ⊕ β ⊕ u⊕ v)

If the two ciphertexts are x′L∥x′R∥y′L∥y′R and x′′L∥x′′R∥y′′L∥y′′R respectively, we have

x′L ⊕ y′L = xR ⊕ v ⊕ yL ⊕ u

x′R ⊕ y′R = xL ⊕ xR ⊕ u⊕ yR

x′′L ⊕ y′′L = xR ⊕ v ⊕ yL ⊕ u⊕ α⊕ β

x′′R ⊕ y′′R = xL ⊕ xR ⊕ u⊕ yR ⊕ α⊕ β

and we can eliminate u and v and obtain

x′R ⊕ y′R ⊕ x′′R ⊕ y′′R = α⊕ β

x′L ⊕ x′R ⊕ y′L ⊕ y′L = x′′L ⊕ x′′R ⊕ y′′L ⊕ y′′L

These two properties are satisfied with probability close to 2−
n
2 for the random

cipher. Hence, by checking this property, we have a distinguisher with advan-
tage close to 1− 2−

n
2 .



3 Bias in the Modulo p Seed

We assume a setup phase Setup(1λ) → p to determine a public prime number p with
security parameter λ. We consider the following generators:

Generator Gen0(1
λ, p):

1: pick y ∈U Zp

2: return y

Generator Gen1(1
λ, p):

1: ℓ← ⌈log2 p⌉
2: pick x ∈U {0, 1, . . . , 2ℓ − 1}
3: y ← x mod p
4: return y

Generator Gen2(1
λ, p):

1: ℓ← ⌈log2 p⌉
2: pick x ∈U {0, 1, . . . , 2ℓ+λ − 1}
3: y ← x mod p
4: return y

Here, “pick x ∈U E” means that we sample x from a set E with uniform distribution. The
value ℓ is the bitlength of p. In what follows, we consider distinguishers with unbounded
complexity but limited to a single query to a generator.

Q.1 Estimate how ℓ is usually fixed to have λ-bit security for typical cryptography in a
(generic) group of order p. (For instance, in an elliptic curve.)

Typically, we need the discrete logarithm to be hard. Due to generic attacks,
this requires ℓ ≥ 2λ to have λ-bit security. In a generic group, ℓ = 2λ is
enough.

Q.2 Compute the advantage of the best distinguisher between Gen0 and Gen1. Could it be
large?



We know that the best advantage of an unbounded distinguisher limited to one
sample is equal to the statistical distance between the two distributions. We let
d1 be the statistical distance between the outputs of Gen0 and Gen1. We have

d1 =
1

2

p−1∑
y=0

∣∣∣∣1p − Pr[x mod p = y]

∣∣∣∣
where x is uniform in {0, 1, . . . , 2ℓ − 1}. Hence, Pr[x mod p = y] = 2−ℓ if
y ≥ 2ℓ mod p and Pr[x mod p = y] = 2× 2−ℓ otherwise. Thus,

d1 =
1

2

(2ℓ mod p)−1∑
y=0

∣∣∣∣1p − 2

2ℓ

∣∣∣∣+ 1

2

p−1∑
y=2ℓ mod p

∣∣∣∣1p − 1

2ℓ

∣∣∣∣
=

(2ℓ mod p)−1∑
y=0

∣∣∣∣1p − 2

2ℓ

∣∣∣∣
= (2ℓ mod p)

(
2

2ℓ
− 1

p

)
(The second line comes from that the difference between the two sums is equal
to the sum of the two sums without absolute values which is zero.) We write
2ℓ = p+ r with 0 ≤ r < 2ℓ−1 < p. We have

d1 = r

(
2

2ℓ
− 1

2ℓ − r

)
As we can see, for r ≈ 2ℓ−2, we have d1 ≈ 1

6
. So d1 can be pretty high. (1

6
is

not negligible.)

Q.3 Compute the advantage of the best distinguisher between Gen0 and Gen2.
Hint: use the Euclidean division 2ℓ+λ = qp+ r.

We let d2 be the statistical distance. We write 2ℓ+λ = qp+r with 0 ≤ r < p. For
y ≥ r we have Pr[x mod p = y] = q

2ℓ+λ and Pr[x mod p = y] = q+1
2ℓ+λ otherwise.

Hence, with the same computation,

d2 =
r−1∑
y=0

(
q + 1

2ℓ+λ
− 1

p

)
= r

(
q + 1

2ℓ+λ
− q

2ℓ+λ − r

)
= r

2ℓ+λ − r(q + 1)

2ℓ+λ(2ℓ+λ − r)
≤ r

2ℓ+λ − r

The upper bound increases with r but we know that r < p ≤ 2ℓ so

d2 ≤
1

2λ − 1
≈ 2−λ



Q.4 Based on the computations, what do you conclude about the generator algorithms?

To obtain a λ-bit security with generators in the group, we should certainly not
use Gen1. The Gen2 generator is enough if we select a single element. If we
rather need to use it n times, we better pick x of bitlength ℓ+ λ+ ⌈log2 n⌉.


