
Advanced Cryptography — Final Exam

Serge Vaudenay

21.6.2023

– duration: 3h

– any document allowed

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

– writing with pencil is not allowed

1 The Even-Mansour Cipher

In this exercise we consider a block cipher over n-bit blocks, which uses a 2n-bit key
(K1, K2) and defined by

EncK1,K2(x) = π(x⊕K1)⊕K2

where π is a known permutation of the set {0, 1}n. In the adversarial model, the adversary
is allowed to make D queries to a chosen plaintext/ciphertext oracle (that is, the adver-
sary selects the direction for each query§ — either encryption or decryption — and thei
input block, then gets either the encryption or the decryption of that block depending on
the selected direction) and T queries to an oracle implementing π and π−1 (that is, the
adversary selects the direction and the input and gets the image of that input by either π
or π−1 depending on the selected direction). We consider key recover attacks: the goal of
the adversary is to recover the hidden key (K1, K2).

Q.1 Let ∆ ∈ {0, 1}n be a non-zero constant. We consider an adversary making D random
pairs (xi, x

′
i), i = 1, . . . , D/2, such that x′

i ⊕ xi = ∆. The adversary makes D chosen
plaintext queries to get yi = EncK1,K2(xi) and y′i = EncK1,K2(x

′
i), i = 1, . . . , D/2. Then,

the adversary takes T random pairs (uj, u
′
j), j = 1, . . . , T/2, such that u′

j ⊕ uj = ∆,
and queries the other oracle to get vj = π(uj) and v′j = π(u′

j), j = 1, . . . , T/2.

How to select D and T to have good chances for a pair (i.j) to exist such that uj =
xi ⊕K1?

Q.2 How can the adversary isolate possible values for this pair (i, j) and estimate the ex-
pected number of incorrect values?

Q.3 Deduce a key recovery attack and estimate the success probability when DT is propor-
tional to 2n.



2 Finding Heavy Differentials

Throughout this exercise, n denotes an integer and p denotes a probability. In asymptotic
analysis, n goes to infinity and p may depend on n. Given a function f : {0, 1}n → {0, 1}n
and α, β ∈ {0, 1}n, we define DPf (α, β) = Pr[f(X⊕α) = f(X)⊕β, where ⊕ is the bitwise
exclusive OR and X ∈ {0, 1}n is uniform. When x is such that f(x ⊕ α) = f(x) ⊕ β, we
say that x follows the characteristic (α, β). We say that (α, β) is a heavy characteristic
if DPf (α, β) > p. The objective of this exercise is to find heavy characteristics by having
a black-box access to f and no other information about f . We assume that one memory
register can store a value in {0, 1}n and that an operation over elements of this set cost
one unit of time complexity.

Q.1 Design an algorithm with oracle access to f which is able to find heavy characteristics
with time complexity O(22n) and memory O(22n).

Q.2 Given γ ∈ {0, 1}n, we define gγ(x) = f(x⊕γ)⊕f(x). We assume that when X ∈ {0, 1}n
is uniformly distributed, then the events “x follows (α, β)” and “x ⊕ γ follows (α, β)”
are independent. When both events occur, we say that x is good for (α, β).
If (α, β) is heavy, prove that X is good for (α, β) with probability at least p2 and that
when such event occurs, then gγ(x) = gγ(x⊕ α).

Q.3 Given a heavy characteristic (α, β), if we pick k =
⌈√

n2
n
2 p−1

⌉
random values x1, . . . , xk,

show that except with negligible probability, there exist n
4
pairs (i, j) such thats xj =

xi ⊕ α and xi is good. (Give a heuristic argument.)
Q.4 Complete the following algorithm and show that it can find heavy characteristics, except

with negligible probability, and complexity lower than before. Precisely analyze the
complexity.

1: pick x1, . . . , xk ∈ {0, 1}n at random for k =
⌈√

n2
n
2 p−1

⌉
2: initialize an array Inv[.] and the list L to empty
3: for i = 1 to k do
4: y ← gγ(xi)
5: insert xi in the list Inv[y]
6: if Inv[y] has at least 2 elements then insert y in L
7: end for
8: initialize v{., .} to an empty dictionary and L′ to the empty list
9: for each y in L do

10: for each (xi, xj) pair of element of Inv[y] do
11: α← xj ⊕ xi, β ← f(xj)⊕ f(xi)
12: if v{α, β} exists then
13: v{α, β} ← v{α, β}+ 1
14: else
15: v{α, β} ← 1
16: end if
17: if v{α, β} ≥ n

4
then insert (α, β) in L′ and abort the for loop

18: end for



19: end for
20: . . .

3 Blind Signatures

We consider a blind signature primitive which is defined by the following algorithms:

– KeyGen(1λ)→ (sk, pk) where λ is the security parameter;
– SignC1(pk,m)→ (st, query) where m is a message (bitstring);
– SignS(sk, query)→ resp;
– SignC2(st, resp)→ σ;
– Verify(pk,m, σ)→ true/false.

When algorithms are executed in this order, correctness ensures that Verify returns true.
The idea is that the signing process is run by the interaction between a client and a server.
The server has the signing key sk and has authority to sign. The client knows which message
m is to be signed but the server does not. The security notions are that signatures should
be unforgeable (in a sense to specify in a question below) and query and σ should be
unlinkable (in a sense to specify).

Q.1 Recall the EF-CMA security notions and explain why it does not fit to blind signatures.
Q.2 We try to formalize unforgeability by the notion of one-more forgeries. Following this

game, the adversary wins by showing more signed messages than the number of queries
to a SignS(sk, .) oracle. Properly define the one-more forgery game and formalize security
with respect to this notion.

Q.3 Formalize the notion of unlinkability, where the adversary is now the server.
Q.4 We tweak RSA so that it fits the notion of blind signature. We define KeyGen as in

RSA and SignS(sk, query) = queryd mod N , where sk = (N, d). Propose some algorithms
for SignC1, SignC2, and Verify in order to obtain a blind signature which is one-time
unforgeable and unlinkable. (Give arguments for the security, no formal proof is required
but insecure solutions will have a lower grade.)


