
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

21.6.2023

– duration: 3h
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– writing with pencil is not allowed

The exam grade follows a linear scale in which each question has the same weight.

1 The Even-Mansour Cipher

This exercise is inspired from Dunkelmann-Keller-Shamir Minimalism in
Cryptography: The Even-Mansour Scheme Revisited, EUROCRYPT 2012,
LNCS vol. 7237, Springer.

In this exercise we consider a block cipher over n-bit blocks, which uses a 2n-bit key
(K1, K2) and defined by

EncK1,K2(x) = π(x⊕K1)⊕K2

where π is a known permutation of the set {0, 1}n. In the adversarial model, the adversary
is allowed to make D queries to a chosen plaintext/ciphertext oracle (that is, the adver-
sary selects the direction for each query§ — either encryption or decryption — and thei
input block, then gets either the encryption or the decryption of that block depending on
the selected direction) and T queries to an oracle implementing π and π−1 (that is, the
adversary selects the direction and the input and gets the image of that input by either π
or π−1 depending on the selected direction). We consider key recover attacks: the goal of
the adversary is to recover the hidden key (K1, K2).

Q.1 Let ∆ ∈ {0, 1}n be a non-zero constant. We consider an adversary making D random
pairs (xi, x

′
i), i = 1, . . . , D/2, such that x′

i ⊕ xi = ∆. The adversary makes D chosen
plaintext queries to get yi = EncK1,K2(xi) and y′i = EncK1,K2(x

′
i), i = 1, . . . , D/2. Then,

the adversary takes T random pairs (uj, u
′
j), j = 1, . . . , T/2, such that u′

j ⊕ uj = ∆,
and queries the other oracle to get vj = π(uj) and v′j = π(u′

j), j = 1, . . . , T/2.
How to select D and T to have good chances for a pair (i.j) to exist such that uj =
xi ⊕K1?



This problem relates to the birthday paradox. The number of possible pairs is
D×T
4

. For each pair, the probability that uj ⊕ xi is exactly ∆ is 2−n. Hence, we
should take D and T such that DT ≈ 4 · 2n. (Say DT proportional to 2n.)

Q.2 How can the adversary isolate possible values for this pair (i, j) and estimate the ex-
pected number of incorrect values?

If uj = xi ⊕K1, then yi = π(uj)⊕K2 = vj ⊕K2. Furthermore,

u′
j = uj ⊕∆ = xi ⊕K1 ⊕∆ = x′

i ⊕K1

Hence, y′i = π(u′
j)⊕K2 = v′j ⊕K2. We deduce y′i ⊕ yi = v′j ⊕ vj.

The adversary can compute y′i ⊕ yi for every i, and v′j ⊕ vj for every j, then
finds a match between the two lists to find a possible pair (i, j). For a pair
which does not satisfy uj = xi ⊕K1, the y′i ⊕ yi = v′j ⊕ vj equality holds with

probability 2−n. So, we expect to find DT
4
2−n bad pairs in addition to the good

one. With out selection DT ≈ 4 · 2n, we expect to have one bad pair.

Q.3 Deduce a key recovery attack and estimate the success probability when DT is propor-
tional to 2n.



The adversary does the matching between the two lists as before and isolates
possible values for (i, j). This suggests K1 = uj ⊕ xi and K2 = vj ⊕ yi. This
suggestion for (K1, K2) can be verified on any (xi′ , yi′) pair to check whether
the equation yi′ = π(xi′ ⊕ K1) ⊕ K2 is satisfied. This requires an additional
query to π. Hence, the attack can rule out the bad pair and isolate the good
one to deduce K1 and K2.

1: pick ∆, x1, . . . , xD/2, u1, . . . , uT/2−1 ∈ {0, 1}n at random (with ∆ ̸= 0)
2: set x′

i = xi⊕∆ and u′
j = uj⊕∆ for i = 1, . . . , D/2 and j = 1, . . . , T/2− 1

3: query yi = Enc(xi) for i = 1, . . . , D/2
4: query y′i = Enc(x′

i) for i = 1, . . . , D/2
5: query vi = π(uj) for j = 1, . . . , T/2− 1
6: query v′v = π(u′

j) for j = 1, . . . , T/2− 1
7: makes a dictionary H(y′i ⊕ yi) = i for i = 1, . . . , D/2
8: for j = 1, . . . , T/2 − 1, checks if H(v′j ⊕ vj) exists and deduce a list L of

(i, j) pairs
9: pick an arbitrary i′

10: for each (i, j) ∈ L do
11: set K1 = uj ⊕ xi and K2 = vj ⊕ yi
12: query π(xi′ ⊕K1)
13: if yi′ ̸= π(xi′ ⊕K1)⊕K2 then remove (i, j) from L
14: end for
15: return L

With DT = c2n, we expect to find c
4
good pairs (i, j) and c

4
bad pairs (i, j). We

take c = 4 and the probability to have the good pair is

1−
(
1− 2−n

)DT
4 ≈ 1− e−

DT
4

2−n

= 1− e−1 ≈ 63%



2 Finding Heavy Differentials

This exercise is inspired from Dinur-Dunkelmann-Keller-Ronen-Shamir Effi-
cient Detection of High Probability Statistical Properties of Cryptosystems via
Surrogate Differentiation, EUROCRYPT 2023, LNCS vol. 14007, Springer.

Throughout this exercise, n denotes an integer and p denotes a probability. In asymptotic
analysis, n goes to infinity and p may depend on n. Given a function f : {0, 1}n → {0, 1}n
and α, β ∈ {0, 1}n, we define DPf (α, β) = Pr[f(X⊕α) = f(X)⊕β, where ⊕ is the bitwise
exclusive OR and X ∈ {0, 1}n is uniform. When x is such that f(x ⊕ α) = f(x) ⊕ β, we
say that x follows the characteristic (α, β). We say that (α, β) is a heavy characteristic
if DPf (α, β) > p. The objective of this exercise is to find heavy characteristics by having
a black-box access to f and no other information about f . We assume that one memory
register can store a value in {0, 1}n and that an operation over elements of this set cost
one unit of time complexity.

Q.1 Design an algorithm with oracle access to f which is able to find heavy characteristics
with time complexity O(22n) and memory O(22n).

1: initialize an array ct[., .] to 0
2: for x and α in {0, 1}n do
3: β ← f(x⊕ α)⊕ f(x)
4: increment ct[α, β]
5: end for
6: initialize a list L to empty
7: for α and β in {0, 1}n do
8: if ct[α, β] > p2n then
9: add (α, β) in L

10: end if
11: end for
12: return L

Since this algorithm has two loops of 22n iterations with elementary operations,
this is the time complexity. Obviously, the first loop load ct[., .] with ct[α, β] =
2n.DPf (α, β). Hence, the second loop finds all heavy characteristics.

Q.2 Given γ ∈ {0, 1}n, we define gγ(x) = f(x⊕γ)⊕f(x). We assume that when X ∈ {0, 1}n
is uniformly distributed, then the events “x follows (α, β)” and “x ⊕ γ follows (α, β)”
are independent. When both events occur, we say that x is good for (α, β).

If (α, β) is heavy, prove that X is good for (α, β) with probability at least p2 and that
when such event occurs, then gγ(x) = gγ(x⊕ α).



We know that X follows the characteristic with probability at least p. We know
that X ⊕ α follows the characteristic with probability at least p as well, since
X ⊕ α follows the same distribution as X. Since we assume independence, X
is good for the characteristic with probability p2. When this happens,

gγ(x⊕ α) = f(x⊕ α⊕ γ)⊕ f(x⊕ α) = f(x⊕ γ)⊕ β ⊕ f(x)⊕ β = gγ(x)

Q.3 Given a heavy characteristic (α, β), if we pick k =
⌈√

n2
n
2 p−1

⌉
random values x1, . . . , xk,

show that except with negligible probability, there exist n
4
pairs (i, j) such thats xj =

xi ⊕ α and xi is good. (Give a heuristic argument.)

Essentially, we have roughly k2

2
pairs (i, j) with i < j. Each pair satisfies both

conditions with probability p22−n. Hence, the expected number of pairs satisfy-
ing both conditions is k2

2
p22−n which is n

2
. It exceeds n

4
except with negligible

probability.

Q.4 Complete the following algorithm and show that it can find heavy characteristics, except
with negligible probability, and complexity lower than before. Precisely analyze the
complexity.

1: pick x1, . . . , xk ∈ {0, 1}n at random for k =
⌈√

n2
n
2 p−1

⌉
2: initialize an array Inv[.] and the list L to empty
3: for i = 1 to k do
4: y ← gγ(xi)
5: insert xi in the list Inv[y]
6: if Inv[y] has at least 2 elements then insert y in L
7: end for
8: initialize v{., .} to an empty dictionary and L′ to the empty list
9: for each y in L do

10: for each (xi, xj) pair of element of Inv[y] do
11: α← xj ⊕ xi, β ← f(xj)⊕ f(xi)
12: if v{α, β} exists then
13: v{α, β} ← v{α, β}+ 1
14: else
15: v{α, β} ← 1
16: end if
17: if v{α, β} ≥ n

4
then insert (α, β) in L′ and abort the for loop

18: end for
19: end for
20: . . .



Given that a heavy characteristic can be spotted by n
4
pairs, we can just look

at the (α, β) pairs such that v{α, β} ≥ n
4
to get a list of candidates in L′. For

each such candidate, we can approximate the probability of the characteristic
using O(np−1) samples and isolate good candidates.

1: . . .
2: for each (α, β) in L′ do
3: initialize a = 0
4: for i = 1 to ⌈np−1⌉ do
5: pick a random x ∈ {0, 1}n
6: increment a
7: if f(x⊕ α) = f(x)⊕ β then increment b
8: end for
9: if b/a > n/2 then output (α, β)

10: end for

When the characteristic is heavy, we expect at least n values x to follow it
so we find n/2 except with negligible probability. Likewise, characteristics of
probability lower than p/4 will not be returned, except with negligible probability.
The complexity of the first for loop is k. The second one iterate over up to
k values of y. The inner for loop is bounded to n/4 iterations. Hence, the
presented algorithm in the question has complexity O(nk). What we added has
complexity O(np−1) times the size of L′. By showing that L′ has size lower

than 2
n
2 , the final complexity is O(n 3

22
n
2 p−1).



3 Blind Signatures

We consider a blind signature primitive which is defined by the following algorithms:

– KeyGen(1λ)→ (sk, pk) where λ is the security parameter;
– SignC1(pk,m)→ (st, query) where m is a message (bitstring);
– SignS(sk, query)→ resp;
– SignC2(st, resp)→ σ;
– Verify(pk,m, σ)→ true/false.

When algorithms are executed in this order, correctness ensures that Verify returns true.
The idea is that the signing process is run by the interaction between a client and a server.
The server has the signing key sk and has authority to sign. The client knows which message
m is to be signed but the server does not. The security notions are that signatures should
be unforgeable (in a sense to specify in a question below) and query and σ should be
unlinkable (in a sense to specify).

Q.1 Recall the EF-CMA security notions and explain why it does not fit to blind signatures.

In EF-CMA, the adversary can choose messages to be signed by an oracle.
Here, the adversary would submit query to a oracle implementing SignS(sk, .).
But query can be made following whatever strategy by the adversary and is
supposed to be unlinkable to the signed message. Hence, whenever terminates
with a forgery candidate (m,σ), there is no way to know if indeed the adversary
followed the protocol to make the oracle blindly sign m.

Q.2 We try to formalize unforgeability by the notion of one-more forgeries. Following this
game, the adversary wins by showing more signed messages than the number of queries
to a SignS(sk, .) oracle. Properly define the one-more forgery game and formalize security
with respect to this notion.

We say that the blind signature is one-more unforgeable if for any PPT A, the
probability that the following game outputs 1 is a negligible function of λ.

Input: λ
1: KeyGen(1λ)→ (sk, pk)
2: q ← 0
3: AO(pk)→ (mi, σi)i=1,...

4: if the number of i is not larger than q then abort
5: if there exists i and j such that i < j and mi = mj then abort
6: if there exists i such that Verify(pk,mi, σi) = false then abort
7: return 1

Oracle O(query):
8: increment q
9: SignS(sk, query)→ resp

10: return resp



Q.3 Formalize the notion of unlinkability, where the adversary is now the server.

We limit to honest key generation here. (Allowing the adversary to create pk
maliciously would be more complicated.)

Input: λ and a bit b
1: KeyGen(1λ)→ (sk, pk)
2: A1(pk)→ z
3: return z

Oracle C1(i,m):
4: if queryi defined then abort
5: SignC1(pk,m)→ (si, queryi)
6: return queryi

Oracle C2(i, resp):
7: if si undefined or σi defined then abort
8: SignC2(si, resp)→ σi

9: return σi

Oracle Chal1(m0,m1):
10: if query′0 defined then abort
11: SignC1(pk,mb)→ (s′0, query

′
0)

12: SignC1(pk,m1−b)→ (s′1, query
′
1)

13: return (query′0, query
′
1)

Oracle Chal2(resp0, resp1):
14: if s′0 undefined or σ′

0 defined then abort
15: SignC2(s′0, respb)→ σ′

0

16: SignC2(s′1, resp1−b)→ σ′
1

17: return (σ′
0, σ

′
1)

The advantage is the difference of the probability that the game returns 1 when
b = 0 and b = 1. We say that the blind signature is unlinkable if for every PPT
A, the advantage is a negligible function of λ.
In the game, we modelled the client with oracles. The adversary specifies the
session index i of the signature session and can choose the message to be signed.
Some challenge oracles use two special sessions which are either permuted or
not. The adversary must figure out is the challenge sessions are permuted.

Q.4 We tweak RSA so that it fits the notion of blind signature. We define KeyGen as in
RSA and SignS(sk, query) = queryd mod N , where sk = (N, d). Propose some algorithms
for SignC1, SignC2, and Verify in order to obtain a blind signature which is one-time
unforgeable and unlinkable. (Give arguments for the security, no formal proof is required
but insecure solutions will have a lower grade.)



RSA signatures can be transformed into other RSA signatures, because of the
homomorphic property. To avoid this, we use the approach of the full-domain
hash: Verify(pk,m, σ) checks that σe mod N = H(m), where pk = (N, e) and
H is a random oracle giving outputs in ZN . This way, valid signatures for a
set of message cannot be transformed into a valid signature for a new message.
To make the signature unlinkable, we blind the message to be signed by using
a multiplicative mask r:

SignC1(pk,m):
1: pick r ∈ Z∗

N at random
2: query← (H(m)re) mod N
3: st← (pk, r)
4: return (st, query)

SignC2(st, resp):
5: parse st→ ((N, e), r)
6: σ ← (resp/r) mod N
7: return σ


