
Advanced Cryptography — Final Exam

Solution

Serge Vaudenay

3.7.2024

– duration: 2h

– any document allowed

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Soundness of DLEQ NIZK in ROM

This exercise studies the Discrete Logarithm EQuality (DLEQ) proof protocol and the
batch version.

Q.1 What are the acronyms “NIZK” and “ROM”. Explain what they mean.

NIZK is a Non-Interactive Zero-Knowledge protocol. NI: The prover sends a
single message to the verifier so that the verifier can check the proof. ZK: The
verifier learns no more information than the purpose of the proof (if what is
proven is true, the verifier can generate what he learns without interacting).
ROM is the Random Oracle Model. It is a convenient idealized model which
enables to prove security when we replace hash functions by truly random ones,
implemented by an oracle which we call the “random oracle”.
To get all points, it was necessary to say what the acronyms were for, to explain
NI and ZK, and to say that RO was to model hash functions.

Q.2 We assume that a setup phase defined a public group of prime order q. By using the
generalized Schnorr Σ-protocol, design a Σ-protocol for the relation R between a tuple
of group elements (S, T, U, V ) and a witness w ∈ Zq which is true if and only if U = w ·S
and V = w · T .

R((S, T, U, V ), w) ⇐⇒ U = w · S ∧ V = w · T

We later on call it the DLEQ protocol.



We use the generalized Schnorr protocol for the homomorphism w 7→ (w ·S,w ·
T ). The challenge set is Zq. The prover picks k ∈ Zq uniformly at random,
computed P = k · S and Q = k · T , and sends the message (P,Q) to the
verifier. Upon receiving the challenge e, the prover computes s = k+ew mod q
and responds with s. The verifier checks that P+e·U = s·S and Q+e·V = s·T .
The extractor has input (S, T, U, V, P,Q, e0, s0, e1, s1) with e0 6= e1, sb being the
response to challenge eb for b = 0, 1. It consists of taking w = s1−s0

e1−e0
mod q.

The simulator has input (S, T, U, V, e). It consists of picking s ∈ Zq at random
and giving P = s · S − e · U and Q = s · T − e · V .
Points were removed if the extractor and the simulator were missing.
Many wrong answers were given for the protocol by giving an AND construction
of two Schnorr proofs. However, it proves

(∃w U = wS) ∧ (∃w V = wT )

instead of ∃w (U = wS ∧ V = wT ).

Q.3 The Fiat-Shamir transform sets the challenge to e = H(S, T, U, V,message), where
message is the first message by the prover, and produces a final “proof” π. If instead we
use e = H(S, T,message), show that we can make an algorithm AH(S, T,message) →
(U, V, π) making a valid proof for (S, T, U, V ), i.e. passing the verification procedure of
the Fiat-Shamir transform, even though no witness w may exist.

We let message = (P,Q). The algorithm sets e = H(P,Q), picks s ∈ Zq at
random, computes U = 1

e
(s ·S −P ) and V = 1

e
(s · T −Q), and yields (U, V, π)

where π = (P,Q, s).
What is interesting to observe is that it is rare that there exists a w such that
U = w · S and V = w · T with the obtained values. Hence, the proof π is
deceiving the verifier.
The following solution was proposed: since we can set U and V arbitrarily, just
pick w and set U = wS and V = sT then follow the prover protocol. However,
P and Q are imposed to the adversary in this question so they cannot follow
the protocol with them.

Q.4 We want to prove the hardness of forging a valid π. Why shall we better avoid using
extractors in such a proof?



In general, using an extractor requires to get the response to two different
challenges. In interactive protocols, this is done by “rewinding” the prover, but
the arguments become delicate if the adversary interacts with oracles during
the rewinding time, as there is no guaranty that the prover will then issue a
proof for the same instance and some exponential factors may appear. In non-
interactive protocols, the problem is the same when we use the random oracle
model, because the protocol now becomes interactive with this oracle. Actually,
the forking Lemma is rewinding the prover to some distinguished oracle query.
Hence, it is better to apply arguments which do not require rewinding.
There are extraction techniques which do not require rewinding, but they need
the protocol to be changed and introduce some complexity overhead. Since our
problem is to prove the hardness to forge π, we do not need witness extraction
per se. It would be better to rely on a “proof of membership” rather than a
“proof of knowledge”: only prove that a witness exists rather than a witness is
known.

Q.5 We now take the correct Fiat-Shamir transform. We consider an adversary AH who
interacts with H and is only bounded by a number B of queries but not bounded
in terms of computational complexity. The goal of the adversary is to output a tuple
(S, T, U, V, π). If the verification passes but there exists no witness w for (S, T, U, V ),
we say that the adversary wins.

Q.5a Let π = (message, response). Prove that if the final output (S, T, U, V, π) of A is
such that (S, T, U, V,message) was never queried to H, then the probability to win
is bounded by 1

q
.

Let π = (P,Q, s). We first consider the case where (S, T, U, V, P,Q) was not
queried to H by A. Hence, e = H(S, T, U, V, P,Q) is undetermined and the
query will be made for the verification. We note that if U = V = 0, then
A does not win as the witness w = 0 exists. We assume that U 6= 0 (the
same argument would apply for V 6= 0). The number of e values such that
P + e · U = s · S is exactly one. The probability that H returns that number is
1
q
. Hence, in this case, the probability to win is bounded by 1

q
.

To get all points, it was necessary to mention the U = V = 0 particular case
and to explain in other cases why the number of e was limited to one.

Q.5b For any fresh query (S, T, U, V,message) to H, prove that the probability that there
exists response such that the output (S, T, U, V,message, response) would result in
winning is bounded by 1

q
.

For any query (S, T, U, V, P,Q) to H, we let E be the set of all pairs of group
elements which can be written in the form (w ·S,w ·T ) for some w. There exists
an s making the output (S, T, U, V, P,Q, s) win for A if and only if (U, V ) 6∈ E
and (P,Q) + e · (U, V ) ∈ E. The number of e such that this is true is at most
1. Hence, the probability that s exists is bounded by 1

q
.



Q.5c Deduce that for any AH limited to B queries, the probability to win is bounded by
1+B
q

.

To win, either one fresh query must lead to winning case, or a no-query must
win. There are up to 1+B cases. Each case has a winning probability bounded
by 1

q
. Hence, the algorithm success probability is bounded by 1+B

q
.

Clarity of the argument was necessary here to get all points.



2 A Simple PRF

We let D = {0, 1}n be the domain of the n-bit strings. Given a hash function H from D
to itself, we define the function fk(x) = H(x⊕ k), for x, k ∈ D. We call k a key and x an
input to f . We want to show that f is a PRF in the random oracle model. We consider
a PRF game in the random oracle model, where the adversary can query H, as well as
the oracle which evaluates the function fk. Let A be a PRF adversary and let Γ b be the
PRF game with input bit b. In what follows, we prove that |Pr[Γ 1

A → 1]− Pr[Γ 0
A → 1]| is

negligible.

Q.1 Why shall we indeed consider adversaries making queries to H?

The random oracle model is a trick to replace a real-world hash function H by
a random function. In the real world, anybody can evaluate the hash function,
because it is specified in the system. Hence, the adversary can as well. If we
now outsource the H computation to a random oracle, it does not make sense
to restrict the adversary to use it.
Answers such that “because in ROM we give access to the random oracle”
received no point.

Q.2 Prove that there exists an adversary B who never repeats any query to H nor any query
to the f -evaluation oracle and such that Pr[Γ b

A → 1] = Pr[Γ b
B → 1] for every b.

The algorithm B just simulates A but intercepts every query. The algorithm B
maintains the list of queries which have been made and the obtained responses.
If a query is new, then B proceeds, makes that query, and forwards the answer
to the A simulation. If a query repeats, then B checks how it was answered
before and gives the same answer to the A simulation. Clearly, oracles are
deterministic in this game so A sees exactly the same thing as if it was directly
interacting with the oracles. Hence, the games give the same outcome.
Answers such as “repeating queries make no sense” or “repeating queries do
not bring new information” did not get all the points.

Q.3 Let i be an integer. We define the event Ei that the first i queries made by B lead to
no repetitions on the side of H. Prove that Pr[¬Ei+1|Ei] ≤ i2−n.

We know that A never repeats a query. So the only repeating queries to H must
come from two origins: A and the f -evaluation oracle. If the ith query y to H
repeats, it must be that A queries y to H and x = y ⊕ k to the f -evaluation
oracle. Hence, k is the XOR of the ith query with one of the previous queries.
These are i possible values for k.
When Ei occurs, the first i responses by H can be pre-determined. Hence, the
responses are independent from k. The probability that k was selected among
the i possible values is bounded by i2−n. Hence, Pr[¬Ei+1|Ei] ≤ i2−n.



Q.4 We modify the game Γ b by making H always answer something random and freshly
sampled. We denote by Γ̄ b the new game. Deduce from the previous question that
|Pr[Γ̄ 1

B → 1] − Pr[Γ 1
B → 1]| ≤ m2

2
2−n and Pr[Γ̄ 0

B → 1] = Pr[Γ 0
B → 1], where m is the

total number of oracle calls.

Let E be the event that there is no repeating query to H. Whenever E holds, Γ b

and Γ̄ b are identical, as H would freshly select a new answer at random upon
a new query anyway. Furthermore, in the b = 0 case with a random function,
the f -evaluation oracle makes no query to H so E always occurs, thanks to the
construction of B. Hence, Pr[Γ̄ 0

B → 1] = Pr[Γ 0
B → 1].

In the b = 1 case, ¬E occurs if only f -evaluation oracle makes a query to
H which collides with one H oracle by B. By the difference Lemma, we have
|Pr[Γ̄ 1

B → 1]− Pr[Γ 1
B → 1]| ≤ Pr[¬E]. Clearly,

¬E ⊆
m−1∨
i=0

((¬Ei+1) ∧ Ei)

Hence,

Pr[¬E] ≤
m−1∑
i=0

Pr[¬Ei+1 ∧ Ei] ≤
m−1∑
i=0

Pr[¬Ei+1|Ei] ≤
m−1∑
i=0

i2−n ≤ m2

2
2−n

To get all points, we had to refer to the difference lemma and not to forget the
b = 0 case.

Q.5 Prove Pr[Γ̄ 1
B → 1] = Pr[Γ̄ 0

B → 1] and conclude.

The input query to H is not useful anymore in Γ̄ 1, to the f -evaluation oracle
in Γ̄ 1 does no longer need to compute it. Clearly, this oracle now does the
same in Γ̄ 1 and Γ̄ 0. The game does not use b any more. Hence, Pr[Γ̄ 1

B → 1] =
Pr[Γ̄ 0

B → 1].
Given all results, we deduce |Pr[Γ 1

A → 1]− Pr[Γ 0
A → 1]| ≤ m2

2
2−n.

Q.6 Show that the security bound we obtained is pretty tight by constructing an adversary
which (nearly) matches the bound.

We can construct a birthday-bound adversary which uses m ∼ 2
n
2 , alternating

non-repeating queries to H and the f -evaluation oracles. From the two types of
oracles, we obtain two list of queries to H which are likely to collide. Whenever
the adversary sees a collision H(x) = fk(y), the adversary can try to check if
k = x⊕y is coherent with all f -evaluation queries. If k is found, the adversary
outputs 1. Otherwise, the answer is 0.
The adversary will succeed in Γ 1 with constant probability. In Γ 0, it is nearly
impossible to output 1. Hence, we obtain a constant advantage, which shows
that the bound is tight.


