Advanced Cryptography — Midterm Exam

Serge Vaudenay

11.4.2024

- duration: 1h45
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will **not** answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Signatures with Malicious Setup

We recall the DSA signature scheme using a hash function H.

- Public parameters setup: set group parameters (p, q, g) such that p and q are large prime numbers, q divides p-1, and g has order q in \mathbf{Z}_p^* . The group parameters are implicit inputs of other algorithms.
- Key generation: pick a random $x \in \mathbf{Z}_q$ and set $y = g^x \mod p$. The secret key is x and the public key is y.
- Signature: pick $k \in \mathbb{Z}_q^*$ and set $r = g^k \mod p \mod q$ and $s = \frac{H(M) + xr}{k} \mod q$ where M is the message to be signed. The signature is (r, s). Verification: compare r with $g^{\frac{H(M)}{s}}y^{\frac{r}{s}} \mod p \mod q$.
- Q.1 The above description does not fit the definition of a signature scheme in three algorithms: key generation, signature, verification. Propose a formal definition of a signature scheme which includes the notion of public parameters setup and the notion of correctness.
- Q.2 Formally define the notion of unforgeability which captures malicious setup.
- Q.3 Imagine that setup is done by a malicious adversary. Show that it is possible to generate some public parameters (p, q, q) which are correct together with a pair of messages (M_0, M_1) such that $M_0 \neq M_1$ and for any public key y and any $\sigma = (r, s)$, if σ is a valid signature of M_0 for y, then σ is a valid signature of M_1 for y as well.

2 Find-then-Guess Security for Deterministic Symmetric Encryption

We consider a symmetric encryption scheme ($\{0,1\}^k, \mathcal{D}, \mathsf{Enc}, \mathsf{Dec}$). (We recall that k depends on an implicit security parameter s; we recall that \mathcal{D} is the set of all bitstrings of length in an admissible set \mathcal{L} ; we assume the scheme to be variable-length by default;

we assume no nonce; we may assume length-preservation or not.) In this exercise, we assume Enc to be deterministic. We define the Deterministic Find-then-Guess CPA security (DFG-CPA-security) as the indistinguishability between two games Γ_0 and Γ_1 . The scheme is secure if for any PPT 2-stage adversary $(\mathcal{A}_1, \mathcal{A}_2)$, the advantage Adv is negligible. The advantage is $Adv = \Pr[\Gamma_1 \rightarrow 1] - \Pr[\Gamma_0 \rightarrow 1]$ with the following games:

Game Γ_b : 1: pick $K \leftarrow \{0,1\}^k$ uniformly at random 2: $S \leftarrow \emptyset$ 3: $\mathcal{A}_1^{\mathsf{OEnc}_1} \rightarrow (\mathsf{pt}_0, \mathsf{pt}_1, \mathsf{st})$ 4: if $|\mathsf{pt}_0| \neq |\mathsf{pt}_1|$ then return \perp 5: if $\mathsf{pt}_0 \in S$ or $\mathsf{pt}_1 \in S$ then return \perp 6: ct $\leftarrow \mathsf{Enc}(K, \mathsf{pt}_b)$ 7: $\mathcal{A}_2^{\mathsf{OEnc}_2}(\mathsf{st}, \mathsf{ct}) \rightarrow z$ 8: return zOracle $\mathsf{OEnc}_1(\mathsf{pt})$: 9: add pt in S10: return $\mathsf{Enc}(K, \mathsf{pt})$ Oracle $\mathsf{OEnc}_2(\mathsf{pt})$: 11: if $\mathsf{pt} \in \{\mathsf{pt}_0, \mathsf{pt}_1\}$ then return \perp 12: return $\mathsf{Enc}(K, \mathsf{pt})$

- Q.1 If we remove line 5 in the definition of the games, prove that no deterministic symmetric encryption is DFG-CPA-secure.
- **Q.2** If we remove line 11 in the definition of the games, prove that no deterministic symmetric encryption is DFG-CPA-secure.
- **Q.3** Propose an extension to define DFG-CPCA-security in a way which is not trivially impossible to achieve like in the previous questions.
- **Q.4** Construct a nonce-less deterministic symmetric encryption scheme which is not lengthpreserving, which is (presumably) DFG-CPA-secure, and which is (certainly) not secure against CPA real-or-ideal distinguishers.
- **Q.5** We assume that \mathcal{D} is finite. Prove that CPA security against decryption implies that $2^{-\ell}$ is negligible, where ℓ is the largest length of an element in \mathcal{D} .
- Q.6 Prove that CPA security against real-or-ideal distinguishers implies DFG-CPA-security.
- **Q.7** Prove that DFG-CPA-security implies CPA security against decryption attacks, assuming that the \mathcal{D} includes elements of length ℓ such that $2^{-\ell}$ is negligible and that \mathcal{D} is finite.