Advanced Cryptography — Midterm Exam

Serge Vaudenay

11.4.2024

- **–** duration: 1h45
- **–** any document allowed
- **–** a pocket calculator is allowed
- **–** communication devices are not allowed
- **–** the exam invigilators will **not** answer any technical question during the exam
- **–** readability and style of writing will be part of the grade

1 Signatures with Malicious Setup

We recall the DSA signature scheme using a hash function *H*.

- **–** Public parameters setup: set group parameters (*p, q, g*) such that *p* and *q* are large prime numbers, *q* divides $p-1$, and *g* has order *q* in \mathbb{Z}_p^* . The group parameters are implicit inputs of other algorithms.
- $−$ Key generation: pick a random $x \in \mathbb{Z}_q$ and set $y = g^x \mod p$. The secret key is *x* and the public key is *y*.
- *–* Signature: pick $k \in \mathbb{Z}_q^*$ and set $r = g^k \mod p \mod q$ and $s = \frac{H(M) + xr}{k} \mod q$ where *M* is the message to be signed. The signature is (r, s) .
- $-$ Verification: compare *r* with $g^{\frac{H(M)}{s}}y^{\frac{r}{s}}$ mod *p* mod *q*.
- **Q.1** The above description does not fit the definition of a signature scheme in three algorithms: key generation, signature, verification. Propose a formal definition of a signature scheme which includes the notion of public parameters setup and the notion of correctness.
- **Q.2** Formally define the notion of unforgeability which captures malicious setup.
- **Q.3** Imagine that setup is done by a malicious adversary. Show that it is possible to generate some public parameters (p, q, g) which are correct together with a pair of messages (M_0, M_1) such that $M_0 \neq M_1$ and for any public key *y* and any $\sigma = (r, s)$, if σ is a valid signature of M_0 for *y*, then σ is a valid signature of M_1 for *y* as well.

2 Find-then-Guess Security for Deterministic Symmetric Encryption

We consider a symmetric encryption scheme $({0,1}^k, \mathcal{D}, \text{Enc}, \text{Dec})$. (We recall that *k* depends on an implicit security parameter s ; we recall that $\mathcal D$ is the set of all bitstrings of length in an admissible set \mathcal{L} ; we assume the scheme to be variable-length by default;

we assume no nonce; we may assume length-preservation or not.) In this exercise, we assume Enc to be deterministic. We define the Deterministic Find-then-Guess CPA security (DFG-CPA-security) as the indistinguishability between two games Γ_0 and Γ_1 . The scheme is secure if for any PPT 2-stage adversary (A_1, A_2) , the advantage Adv is negligible. The advantage is $\mathsf{Adv} = \Pr[F_1 \to 1] - \Pr[F_0 \to 1]$ with the following games:

Game *Γb*: 1: pick $K \leftarrow \{0, 1\}^k$ uniformly at random 2: *S ← ∅* $3: \ \mathcal{A}_1^{\mathsf{OEnc}_1} \rightarrow (\mathsf{pt}_0, \mathsf{pt}_1, \mathsf{st})$ $_4: \text{ if } |\mathsf{pt}_0| \neq |\mathsf{pt}_1| \text{ then return } \bot$ 5: **if** $pt_0 \in S$ or $pt_1 \in S$ **then return** \perp 6: **ct** \leftarrow **Enc**(*K*, **pt**_{*b*})</sub> 7: $\mathcal{A}_2^{\mathsf{OEnc}_2}(\mathsf{st},\mathsf{ct}) \to z$ 8: **return** *z* Oracle $OEnc₁(pt):$ 9: add pt in *S* 10: **return** Enc(*K,* pt) Oracle $OEnc_2(pt)$: $\mathbf{11}: \text{ if } \mathsf{pt} \in \{ \mathsf{pt}_0, \mathsf{pt}_1 \} \text{ then } \text{return } \bot$ 12: **return** Enc(*K,* pt)

- **Q.1** If we remove line 5 in the definition of the games, prove that no deterministic symmetric encryption is DFG-CPA-secure.
- **Q.2** If we remove line 11 in the definition of the games, prove that no deterministic symmetric encryption is DFG-CPA-secure.
- **Q.3** Propose an extension to define DFG-CPCA-security in a way which is not trivially impossible to achieve like in the previous questions.
- **Q.4** Construct a nonce-less deterministic symmetric encryption scheme which is not lengthpreserving, which is (presumably) DFG-CPA-secure, and which is (certainly) not secure against CPA real-or-ideal distinguishers.
- Q.5 We assume that D is finite. Prove that CPA security against decryption implies that 2 *−ℓ* is negligible, where *ℓ* is the largest length of an element in *D*.
- **Q.6** Prove that CPA security against real-or-ideal distinguishers implies DFG-CPA-security.
- **Q.7** Prove that DFG-CPA-security implies CPA security against decryption attacks, assuming that the *D* includes elements of length *ℓ* such that 2*−^ℓ* is negligible and that *D* is finite.