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– duration: 1h45
– any document allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade

1 Signatures with Malicious Setup

We recall the DSA signature scheme using a hash function H.

– Public parameters setup: set group parameters (p, q, g) such that p and q are large prime
numbers, q divides p − 1, and g has order q in Z∗

p. The group parameters are implicit
inputs of other algorithms.

– Key generation: pick a random x ∈ Zq and set y = gx mod p. The secret key is x and
the public key is y.

– Signature: pick k ∈ Z∗
q and set r = gk mod p mod q and s = H(M)+xr

k
mod q where M

is the message to be signed. The signature is (r, s).

– Verification: compare r with g
H(M)

s y
r
s mod p mod q.

Q.1 The above description does not fit the definition of a signature scheme in three algo-
rithms: key generation, signature, verification. Propose a formal definition of a signature
scheme which includes the notion of public parameters setup and the notion of correct-
ness.

Q.2 Formally define the notion of unforgeability which captures malicious setup.
Q.3 Imagine that setup is done by a malicious adversary. Show that it is possible to generate

some public parameters (p, q, g) which are correct together with a pair of messages
(M0,M1) such that M0 ̸= M1 and for any public key y and any σ = (r, s), if σ is a valid
signature of M0 for y, then σ is a valid signature of M1 for y as well.

2 Find-then-Guess Security for Deterministic Symmetric
Encryption

We consider a symmetric encryption scheme ({0, 1}k,D,Enc,Dec). (We recall that k de-
pends on an implicit security parameter s; we recall that D is the set of all bitstrings
of length in an admissible set L; we assume the scheme to be variable-length by default;



we assume no nonce; we may assume length-preservation or not.) In this exercise, we as-
sume Enc to be deterministic. We define the Deterministic Find-then-Guess CPA security
(DFG-CPA-security) as the indistinguishability between two games Γ0 and Γ1. The scheme
is secure if for any PPT 2-stage adversary (A1,A2), the advantage Adv is negligible. The
advantage is Adv = Pr[Γ1 → 1]− Pr[Γ0 → 1] with the following games:

Game Γb:
1: pick K ← {0, 1}k uniformly at random
2: S ← ∅
3: AOEnc1

1 → (pt0, pt1, st)
4: if |pt0| ̸= |pt1| then return ⊥
5: if pt0 ∈ S or pt1 ∈ S then return ⊥
6: ct← Enc(K, ptb)
7: AOEnc2

2 (st, ct)→ z
8: return z

Oracle OEnc1(pt):
9: add pt in S

10: return Enc(K, pt)

Oracle OEnc2(pt):
11: if pt ∈ {pt0, pt1} then return ⊥
12: return Enc(K, pt)

Q.1 If we remove line 5 in the definition of the games, prove that no deterministic symmetric
encryption is DFG-CPA-secure.

Q.2 If we remove line 11 in the definition of the games, prove that no deterministic symmetric
encryption is DFG-CPA-secure.

Q.3 Propose an extension to define DFG-CPCA-security in a way which is not trivially
impossible to achieve like in the previous questions.

Q.4 Construct a nonce-less deterministic symmetric encryption scheme which is not length-
preserving, which is (presumably) DFG-CPA-secure, and which is (certainly) not secure
against CPA real-or-ideal distinguishers.

Q.5 We assume that D is finite. Prove that CPA security against decryption implies that
2−ℓ is negligible, where ℓ is the largest length of an element in D.

Q.6 Prove that CPA security against real-or-ideal distinguishers implies DFG-CPA-security.
Q.7 Prove that DFG-CPA-security implies CPA security against decryption attacks, assum-

ing that the D includes elements of length ℓ such that 2−ℓ is negligible and that D is
finite.


