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– any document allowed
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– the exam invigilators will not answer any technical question during the exam
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The exam grade follows a linear scale in which each question has the same weight.

1 Signatures with Malicious Setup

We recall the DSA signature scheme using a hash function H.

– Public parameters setup: set group parameters (p, q, g) such that p and q are large prime
numbers, q divides p − 1, and g has order q in Z∗

p. The group parameters are implicit
inputs of other algorithms.

– Key generation: pick a random x ∈ Zq and set y = gx mod p. The secret key is x and
the public key is y.

– Signature: pick k ∈ Z∗
q and set r = gk mod p mod q and s = H(M)+xr

k
mod q where M

is the message to be signed. The signature is (r, s).

– Verification: compare r with g
H(M)

s y
r
s mod p mod q.

Q.1 The above description does not fit the definition of a signature scheme in three algo-
rithms: key generation, signature, verification. Propose a formal definition of a signature
scheme which includes the notion of public parameters setup and the notion of correct-
ness.



A digital signature scheme is a tuple (Setup,Gen,D, Sig,Ver) with a mes-
sage domain D ⊆ {0, 1}∗ and four PPT algorithms Setup, Gen, Sig, and Ver.
The algorithm Ver is deterministic and outputs 0 (reject) or 1 (accept). It is
such that

∀X ∈ D Pr
ri,rg ,rs

[Ver(pp, pk, X, Sig(pp, sk, X; rs)) = 1] = 1

where pp = Setup(1s; ri) and (pk, sk) = Gen(pp; rg).
[This question has been misunderstood by many students. The question was to
propose a definition for what is a digital signature scheme with public param-
eters setup, i.e. to define the interface. It was understood as paraphrasing the
above DSA specifications. However, it was graded as correct if some algorithm
names, inputs and outputs were clearly defined and the correctness property
was written, but copying the specifications was graded 1pt only.]

Q.2 Formally define the notion of unforgeability which captures malicious setup.

A digital signature scheme (Setup,Gen,D, Sig,Ver) is secure against exis-
tential forgery under chosen message attacks (EF-CMA) with mali-
cious setup if for any 2-stage PPT (A1,A2), the advantage Adv is negligible.

Adv = Pr[game returns 1]

Game
1: A1

$−→ (pp, st)

2: Gen(pp)
$−→ (pk, sk)

3: Queries← ∅
4: AOSig

2 (st, pk)→ (X, σ)
5: if X ∈ Queries then return 0
6: return 1Ver(pp,pk,X,σ)

Oracle OSig(X):
7: σ ← Sig(pp, sk, X)
8: Queries← Queries ∪ {X}
9: return σ

[One point less was given if the CMA part or setup part was missing.]

Q.3 Imagine that setup is done by a malicious adversary. Show that it is possible to generate
some public parameters (p, q, g) which are correct together with a pair of messages
(M0,M1) such that M0 ̸= M1 and for any public key y and any σ = (r, s), if σ is a valid
signature of M0 for y, then σ is a valid signature of M1 for y as well.

Given M0 and M1 random, we can set q = |H(M1) − H(M0)| and generate
p+1 multiple of q until p and q are both prime. Generating g follows. We have
the property that H(M1) ≡ H(M0) (mod q). Hence, for any public key, any
signature (r, s) which is valid for M0 is also valid for M1.
[Some students proposed to take public parameters with a very small q. How-
ever, the parameter verification (for instance, during key generation) would
fail in that case.]



2 Find-then-Guess Security for Deterministic Symmetric
Encryption

We consider a symmetric encryption scheme ({0, 1}k,D,Enc,Dec). (We recall that k de-
pends on an implicit security parameter s; we recall that D is the set of all bitstrings
of length in an admissible set L; we assume the scheme to be variable-length by default;
we assume no nonce; we may assume length-preservation or not.) In this exercise, we as-
sume Enc to be deterministic. We define the Deterministic Find-then-Guess CPA security
(DFG-CPA-security) as the indistinguishability between two games Γ0 and Γ1. The scheme
is secure if for any PPT 2-stage adversary (A1,A2), the advantage Adv is negligible. The
advantage is Adv = Pr[Γ1 → 1]− Pr[Γ0 → 1] with the following games:

Game Γb:
1: pick K ← {0, 1}k uniformly at random
2: S ← ∅
3: AOEnc1

1 → (pt0, pt1, st)
4: if |pt0| ̸= |pt1| then return ⊥
5: if pt0 ∈ S or pt1 ∈ S then return ⊥
6: ct← Enc(K, ptb)
7: AOEnc2

2 (st, ct)→ z
8: return z

Oracle OEnc1(pt):
9: add pt in S

10: return Enc(K, pt)

Oracle OEnc2(pt):
11: if pt ∈ {pt0, pt1} then return ⊥
12: return Enc(K, pt)

Q.1 If we remove line 5 in the definition of the games, prove that no deterministic symmetric
encryption is DFG-CPA-secure.

Essentially, we use that the encryption of pt0 (or pt1) is known from an OEnc
query, then it is trivial to realize whether ct is that encryption because encryp-
tion is deterministic.

AO
1 :
1: pick pt0, pt1 different, of same length, and in the plaintext domain arbi-

trarily
2: st← O(pt0)
3: return (pt0, pt1, st)

AO
2 (st, ct):
4: return 1ct=st

Since encryption is deterministic, Γ0 will encrypt pt0 twice into st = ct so
we have Pr[Γ0 → 1] = 1. In Γ1, st and ct are encryptions of two different
plaintexts pt0 and pt1. Due to the correctness of encryption, they cannot be
equal so we have Pr[Γ1 → 1] = 0. We deduce Adv = 1 which is not negligible.

Q.2 If we remove line 11 in the definition of the games, prove that no deterministic symmetric
encryption is DFG-CPA-secure.



We apply a similar idea.

AO
1 :
1: pick pt0, pt1 different, of same length, and in the plaintext domain arbi-

trarily
2: st← pt0
3: return (pt0, pt1, st)

AO
2 (st, ct):
4: ct0 ← O(st)
5: return 1ct=ct0

We prove Adv = 1 in the same way.

Q.3 Propose an extension to define DFG-CPCA-security in a way which is not trivially
impossible to achieve like in the previous questions.

The point here is to take into account that some new encryptions will be known
from decryption queries. Of course, we should exclude the decryption query set
to the challenge ciphertext ct.

ODec1(x) :
1: pt← Dec(K, x)
2: add pt in S
3: return pt

ODec2(x) :
4: if x = ct then return ⊥
5: pt← Dec(K, x)
6: return pt

Q.4 Construct a nonce-less deterministic symmetric encryption scheme which is not length-
preserving, which is (presumably) DFG-CPA-secure, and which is (certainly) not secure
against CPA real-or-ideal distinguishers.

Assume that a DFG-CPA-secure scheme exists. We construct a new scheme
by Enc′(K, pt) = Enc(K, pt)∥Enc(K, pt) and Dec′(K, ct) = Dec(K, lefthalf(ct)).
Clearly, this is still DFG-CPA-secure. However, we can trivially distinguish
from an ideal cipher by checking that a ciphertext is not of form x∥x.

Q.5 We assume that D is finite. Prove that CPA security against decryption implies that
2−ℓ is negligible, where ℓ is the largest length of an element in D.

We have seen in class that security against decryption implies that 1
#D is negli-

gible. (The used decryption adversary essentially picks a random answer from
D and has 1

#D as an advantage.)

We recall that D must be of form {x ∈ {0, 1}∗; |x| ∈ L} for a set L of admissible
lengths. Hence, #D =

∑
ℓ∈L 2

ℓ. Let ℓ = maxL be the largest length. We have
#D ≤ 2 · 2ℓ so 1

2
2−ℓ ≤ 1

#D = negl. We deduce that 2−ℓ is negligible.



Q.6 Prove that CPA security against real-or-ideal distinguishers implies DFG-CPA-security.

Assume CPA security against distinguishers. In order to prove DFG-CPA-
security, consider an adversary (A1,A2) playing the DFG-CPA game. We define
a distinguisher B as follows:

BO:
1: pick β ∈ {0, 1} at random
2: S ← ∅
3: ASEnc1

1 → (pt0, pt1, st)
4: if |pt0| ̸= |pt1| then return β
5: if pt0 ∈ S or pt1 ∈ S then re-

turn β
6: ct← O(ptβ)
7: ASEnc2

2 (st, ct)→ z
8: return β ⊕ 1z=1

Subroutine SEnc1(pt):
9: add pt in S

10: return O(pt)

Subroutine SEnc2(pt):
11: if pt ∈ {pt0, pt1} then make B re-

turn β
12: return O(pt)

The real game of indistinguishability returns 1 if Γβ returns 1− β:

Pr[INDreal → 1] =
1

2
(1− Pr[Γ1 → 1]) +

1

2
Pr[Γ0 → 1] =

1

2
− 1

2
AdvA

In the ideal game of indistinguishability, no information leaks on whether ct is
the encryption of pt0 or pt1 with the random permutation. Hence, Pr[INDideal →
1] = 1

2
. Finally, we obtain that AdvB = −1

2
AdvA.

Due to CPA security against disginguishers, we know that AdvB is negligible.
Therefore, AdvA is negligible. This proves DFG-CPA security.

Q.7 Prove that DFG-CPA-security implies CPA security against decryption attacks, assum-
ing that the D includes elements of length ℓ such that 2−ℓ is negligible and that D is
finite.



Assume DFG-CPA-security. In order to prove CPA security against decryption
attacks, consider an adversary B playing the CPA decryption game. We define
an DFG-CPA adversary (A1,A2) as follows:

AO
1 :
1: select an admissible length ℓ in D such that 2−ℓ is negligible
2: pick pt0, pt1 different, of same length ℓ, and in the plaintext domain arbi-

trarily
3: st← pt0
4: return (pt0, pt1, st)

AO
2 (st, ct):
5: BSEnc(ct)→ x
6: return 1x=st

Subroutine SEnc(pt):
7: x← O(pt)
8: if x ̸= ⊥ then return x
9: make A2 return 1pt=st

In order for Γb to return 1, B must not query OEnc with pt1 and must either
query OEnc with pt0 or return x = pt0.
In Γ0, no information on pt1 is given to A2 (except it has the same length as
the decryption of ct and it is different). Let pi be the probability that the i-th
query from B is pt1. For any i, we have pi ≤ 1

2ℓ−1
. Let q be the number of

oracle queries. So, the probability that B ever queries OEnc with pt1 is bounded
by q

2ℓ−1
.

In Γ0, except with this failure case, when B wins the decryption game, no
matter if B queries OEnc with pt0 or not, the outcome of the game would be 1.
Hence, Pr[Γ0 → 1] ≥ AdvB − q

2ℓ−1
.

In Γ1, B has no information about pt0 (except that it is different from the
decryption of ct but of same length ℓ). Let pi be the probability that the i-th
query from B is pt0. Let p0 be the probability that the output of B is pt0. For
any i, we have pi ≤ 1

2ℓ−1
. Let q be the number of oracle queries. We have

Pr[Γ1 → 1] ≤ q+1
2ℓ−1

.

We deduce that AdvA ≥ AdvB− 2q
2ℓ−1

. Due to DFG-CPA-security., we know that
AdvA is negligible. Therefore, AdvB is negligible. This proves CPA security
against decryption attacks.


