Advanced Cryptography — Midterm Exam

Serge Vaudenay

17.4.2025

- duration: 1h45
- any document allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will **not** answer any technical question during the exam
- readability and style of writing will be part of the grade

1 Alternate IND-CCA Security

Given a public-key cryptosystem (Gen, Enc, Dec), we define the following games for b = 0, 1:

The advantage is defined as $Adv(A_1, A_2) = Pr[\Gamma_1 \to 1] - Pr[\Gamma_0 \to 1]$. We say that the cryptosystem is IND²-CCA-secure if for any PPT (A_1, A_2) , the advantage is negligible.

- Q.1 What is the difference between this notion and IND-CCA security?
- Q.2 Prove that the plain ElGamal cryptosystem is not IND²-CCA-secure by specifying an adversary and proving that it has a high advantage.
- Q.3 We want to prove that IND²-CCA security implies IND-CCA.
 - Q.3a We first consider the variant IND²-CPA security of IND²-CCA security where there is no decryption oracle. If the cryptosystem is IND²-CPA-secure, prove that it is IND-CPA-secure.
 - Q.3b To extend the previous result to IND²-CCA security implies IND-CCA security, show that we need to consider a failure case which reduces to the following game returning 1:

Guess(C):

1: Gen $\xrightarrow{\$}$ (pk, sk)

$$2:~\mathcal{C}^{\mathsf{ODec}}(\mathsf{pk}) \xrightarrow{\$} (\mathsf{pt},\mathcal{L})$$

3: $\mathsf{ct}_0 \xleftarrow{\$} \mathsf{Enc}(\mathsf{pk}, \mathsf{pt})$

4: return $1_{\mathsf{ct}_0 \in \mathcal{L}}$

Oracle ODec(ct):

5: return Dec(sk, ct)

For this, construct a PPT adverdary \mathcal{C} such that

$$\mathsf{Adv}(\mathcal{B}_1,\mathcal{B}_2) \leq \mathsf{Adv}(\mathcal{A}_1,\mathcal{A}_2) + \mathsf{Adv}(\mathcal{C})$$

Q.3c Construct an IND²-CCA adversary $(\mathcal{D}_1, \mathcal{D}_2)$ making no ODec_2 oracle access and such that

$$\mathsf{Adv}(\mathcal{C}) = \mathsf{Adv}(\mathcal{D}_1, \mathcal{D}_2)$$

Then, conclude about the IND-CCA security of the cryptosystem.

Q.4 We now want to prove that IND-CCA security implies IND²-CCA. For that, we consider the following intermediary game:

$$\begin{split} &\varGamma_{b,b'}(\mathcal{A}_{1},\mathcal{A}_{2}) \colon \\ &1: \ \mathsf{Gen} \overset{\$}{\to} (\mathsf{pk},\mathsf{sk}) \\ &2: \ \mathcal{A}_{1}^{\mathsf{ODec}_{1}}(\mathsf{pk}) \overset{\$}{\to} (\mathsf{pt}_{0},\mathsf{pt}_{1},\mathsf{st}) \\ &3: \ \mathbf{if} \ |\mathsf{pt}_{0}| \neq |\mathsf{pt}_{1}| \ \mathbf{then} \ \mathbf{return} \ 0 \\ &4: \ \mathsf{ct}_{0} \overset{\$}{\leftarrow} \mathsf{Enc}(\mathsf{pk},\mathsf{pt}_{1-b'}) \\ &5: \ \mathsf{ct}_{1} \overset{\$}{\leftarrow} \mathsf{Enc}(\mathsf{pk},\mathsf{pt}_{b}) \\ &6: \ \mathcal{A}_{2}^{\mathsf{ODec}_{2}}(\mathsf{st},\mathsf{ct}_{0},\mathsf{ct}_{1}) \overset{\$}{\to} z \\ &7: \ \mathbf{return} \ z \end{split}$$

Oracle $\mathsf{ODec}_1(\mathsf{ct})$:

8: return Dec(sk, ct)

Oracle $\mathsf{ODec}_2(\mathsf{ct})$:

9: if $ct = ct_0$ or $ct = ct_1$ then return \perp

 $\triangleright \mathcal{L}$ is a list of ciphertexts

10: return Dec(sk, ct)

Q.4a Construct an IND-CCA adversary $(\mathcal{B}_1, \mathcal{B}_2)$ such that

$$\Pr[\Gamma_{1,1}(\mathcal{A}_1,\mathcal{A}_2) \to 1] - \Pr[\Gamma_{1,0}(\mathcal{A}_1,\mathcal{A}_2) \to 1] \le \mathsf{Adv}(\mathcal{B}_1,\mathcal{B}_2)$$

Q.4b Construct an IND-CCA adversary (C_1, C_2) such that

$$\Pr[\Gamma_{1,0}(\mathcal{A}_1,\mathcal{A}_2) \to 1] - \Pr[\Gamma_{0,0}(\mathcal{A}_1,\mathcal{A}_2) \to 1] \le \mathsf{Adv}(\mathcal{C}_1,\mathcal{C}_2)$$

Then, conclude about the IND²-CCA security of the cryptosystem.

2 Proofs for ElGamal

In this exercise, we consider the plain ElGamal cryptosystem from the course. We use a multiplicatively denoted group of prime order q with generator g.

Q.1 After a sender computes $\mathsf{ct} \leftarrow \mathsf{Enc}(\mathsf{pk},\mathsf{pt};r)$ with a random $r \in \mathbf{Z}_q$, we define an "instance" $x = (\mathsf{pk},\mathsf{pt},\mathsf{ct})$ and a "witness" w = r. They are connected by a relation R(x,w) to express that ct is the correct encryption of pt . Specify R, propose a Σ -protocol for this relation R, and prove that it is a Σ -protocol.

- Q.2 After a receiver computes $\mathsf{pt} \leftarrow \mathsf{Dec}(\mathsf{sk},\mathsf{ct})$, we define an "instance" $x = (\mathsf{pk},\mathsf{pt},\mathsf{ct})$ and a "witness" $w' = \mathsf{sk}$. They are connected by a relation R'(x,w) to express that pt is the correct decryption of ct . Specify R', propose a Σ -protocol for this relation R', and prove that it is a Σ -protocol.
- **Q.3** In the last proof of knowledge of w' such that R'((pk, pt, ct), w'), we want to adapt it into a batch proof for $R'((pk, pt_i, ct_i), w')$ for i = 1, ..., n. For that, we pick a random seed and use a pseudorandom generator set up with seed in order to generate some $\alpha_1, ..., \alpha_n \in \mathbf{Z}_q$. We define $\mathsf{pt} = \prod_{i=1}^n \mathsf{pt}_i^{\alpha_i}$ and $\mathsf{ct} = \prod_{i=1}^n \mathsf{ct}_i^{\alpha_i}$. (The product of ct_i pairs is done component-wise.) We modify the previous Σ -protocol by sending seed in the first message and proving $R'((\mathsf{pk}, \mathsf{pt}, \mathsf{ct}), w')$ only. Prove that it is a Σ -protocol for the relation $\forall i = 1, ..., n$ $R'((\mathsf{pk}, \mathsf{pt}_i, \mathsf{ct}_i), w')$.
 - Note: it is recommended not to loose too much time on soundness as it is quite tricky.
- Q.4 Can we do the same with the protocol of the first question?