Exercise S\#1

Consider the following construction based on DES:

$$
\operatorname{DESV}_{k, k_{1}}(M)=\operatorname{DES}_{k}(M) \oplus k_{1}
$$

Assume an adversary knows d distinct pairs of plaintext/ciphertext $M_{i}, C_{i} \in$ $\{0,1\}^{64}$ such that

$$
C_{i}=\operatorname{DESV}_{k, k_{1}}\left(M_{i}\right)
$$

for all $i=1, \ldots, d$. We assume that $d \geq 2$. Find an attack that recovers both k and k_{1} using on the order of 2^{56} DES encryption.

