

Exercise S#2

cDES is a block cipher based on a 16 rounds Feistel scheme where the round function $f_i : \{0, 1\}^{32} \to \{0, 1\}^{32}$ is defined by $f_i(m) = m \oplus k_i$, where k_i is the *i*-th round key. All the round keys are assumed to be independent from each other. As a consequence, the secret key of cDES can be expressed as $k = (k_1, k_2, \ldots, k_{16}) \in \{0, 1\}^{512}$. An adversary knows one plaintext/ciphertext pair $M, C \in \{0, 1\}^{64}$ such that

$$C = \mathsf{cDES}_k(M).$$

Show that the adversary can easily deduce the ciphertext C^\prime associated to a plaintext M^\prime of his choice.