Cryptography and Security Course (Cryptography Part)

Final Exam Solution

Part 1: Collision within the Merkle-Damgård Construction

1. H is a random function, hence the output is uniformly distributed, so it should be trivial to see that

$$
\operatorname{Pr}_{H}\left[H(x)=H\left(x^{\prime}\right)\right]=\frac{1}{2^{n}}
$$

To extrapolate in more detail, there are $\left(2^{n}\right)^{2^{N}}$ functions $h:\{0,1\}^{N} \rightarrow\{0,1\}^{n}$ and the probability that H is equal to any of these is uniformly distributed. For a given x, x^{\prime} where $x \neq x^{\prime}$, we obtain

$$
\operatorname{Pr}_{H}\left[H(x)=H\left(x^{\prime}\right)\right]=\sum_{h} \operatorname{Pr}[H=h] * 1_{h(x)=h\left(x^{\prime}\right)}=\frac{1}{\left(2^{n}\right)^{2^{N}}} \sum_{h} 1_{h(x)=h\left(x^{\prime}\right)}=\frac{\left(2^{n}\right)^{2^{N}-1}}{\left(2^{n}\right)^{2^{N}}}=\frac{1}{2^{n}}
$$

2. As the IV is fixed and is the same for both inputs x, x^{\prime}, this probability is exactly the same as the probability we computed in the previous section, so

$$
\operatorname{Pr}\left[h_{1}\left(\mathrm{IV}, x_{1}\right)=h_{1}\left(\mathrm{IV}, x_{1}^{\prime}\right)\right]=\frac{1}{2^{n}}
$$

3. Both messages x, x^{\prime} have the same length ℓ, and $\operatorname{pad}=\operatorname{cst}(N)$ where $N=\ell$ in this case, so we have the same pad for both x, x^{\prime}. Thus, this probability is exactly the same as what we computed in the previous section. In fact,

$$
\operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right) \mid h_{1}\left(\mathrm{IV}, x_{1}\right) \neq h_{1}\left(\mathrm{IV}, x_{1}^{\prime}\right)\right]=\frac{1}{2^{n}}
$$

4.

$$
\begin{aligned}
\operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right)\right] & =\operatorname{Pr}\left[h_{1}\left(\operatorname{IV}, x_{1}\right)=h_{1}\left(\operatorname{IV}, x_{1}^{\prime}\right)\right] * \operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right) \mid h_{1}\left(\operatorname{IV}, x_{1}\right)=h_{1}\left(\operatorname{IV}, x_{1}^{\prime}\right)\right] \\
& +\operatorname{Pr}\left[h_{1}\left(\mathrm{IV}, x_{1}\right) \neq h_{1}\left(\operatorname{IV}, x_{1}^{\prime}\right)\right] * \operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right) \mid h_{1}\left(\mathrm{IV}, x_{1}\right) \neq h_{1}\left(\operatorname{IV}, x_{1}^{\prime}\right)\right] \\
& =\frac{1}{2^{n}} * 1+\left(1-\frac{1}{2^{n}}\right) * \frac{1}{2^{n}}=\frac{1}{2^{n-1}}-\frac{1}{2^{2 n}}
\end{aligned}
$$

for given x, x^{\prime} where $x \neq x^{\prime}$.
5. We prove this by induction. For $d=1$, by the previous section, this result is correct! Assuming this result is correct for d, we prove it for $d+1$.

For $d+1$, if the input to h_{d+2} is $\left(A, x_{d+2}\right)$ and $\left(A^{\prime}, x_{d+2}^{\prime}\right)$ for x, x^{\prime} respectively, we know that $x_{d+2}=x_{d+2}^{\prime}$ as both messages have the same length. Calling x_{1} as the message of length d and x_{2} as the message of length $d+1$ and $B=H\left(x_{1}\right)=H\left(x_{1}^{\prime}\right)$ and $C=H\left(x_{2}\right)=H\left(x_{2}^{\prime}\right)$ and $D=h_{d+2}(A, \operatorname{pad})=h_{d+2}\left(A^{\prime}, \operatorname{pad}\right)$, we have

$$
\begin{aligned}
\operatorname{Pr}(C) & =\operatorname{Pr}(D \mid B) * \operatorname{Pr}(B)+\operatorname{Pr}(D \mid \bar{B}) * \operatorname{Pr}(\bar{B})=2^{-n} \sum_{i=0}^{d}\left(1-2^{-n}\right)^{i}+2^{-n}\left(1-2^{-n} \sum_{i=0}^{d}\left(1-2^{-n}\right)^{i}\right) \\
& =2^{-n} \sum_{i=0}^{d+1}\left(1-2^{-n}\right)^{i}
\end{aligned}
$$

If $d \rightarrow \infty$, we have a geometric series which converges, as $1-2^{-n}<1$. So,

$$
\operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right)\right]=\frac{1}{2^{n}} * \frac{1}{1-\left(1-2^{-n}\right)}=1
$$

We can conclude that Merkle-Damgård construction is not appropriate for arbitrary large message sizes!
6. We first need to compute the probability that $A=h_{1}\left(\mathrm{IV}, x_{1}\right)=h_{1}\left(\mathrm{IV}, x_{1}^{\prime}\right)$ and $B=h_{2}\left(a, x_{2}\right)=$ $h_{1}\left(a^{\prime}, x_{2}^{\prime}\right)$, we have

$$
\operatorname{Pr}(B)=\operatorname{Pr}(B \mid A) * \operatorname{Pr}(A)+\operatorname{Pr}(B \mid \bar{A}) * \operatorname{Pr}(\bar{A})=2^{-2 n}+2^{-n}\left(1-2^{-n}\right)=2^{-n}
$$

With similar computations as before, we obtain

$$
\operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right)\right]=2^{-n} \sum_{i=0}^{d-1}\left(1-2^{-n}\right)^{i}
$$

7. First, look for the largest j such that $x_{j} \neq x_{j}^{\prime}$. Using the previous results, we have

$$
\operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right)\right]=2^{-n} \sum_{i=0}^{d-j+1}\left(1-2^{-n}\right)^{i}
$$

Part 2: RSA Variants with CRT Decryption

1. We need to inverse e modulo $\varphi(n)=(p-1)(q-1)$. This can be perfomed using the extended Euclid Algorithm.
2. Here, we have to extract the e th root of c modulo n. Using Chinese Remainder Theorem, this can be obtained by extracting the eth root of c modulo p and the e th root of c modulo q. Let $c_{p}:=c \bmod p$, $c_{q}:=c \bmod q$ and $d_{p}:=e^{-1} \bmod p-1, d_{q}:=e^{-1} \bmod q-1$. We then compute

$$
m_{p}:=c_{p}^{d_{p}} \bmod p \text { and } m_{q}:=c_{q}^{d_{q}} \bmod q
$$

By inverting the CRT transform on $\left(m_{p}, m_{q}\right)$, we get the desired plaintext. Note that replacing both d_{p} and d_{q} by $d:=e^{-1} \bmod (p-1)(q-1)$ would lead to the correct result as well.

Multi-Prime RSA

3. This probability corresponds to the ratio

$$
\frac{\left|\mathbf{Z}_{n}^{*}\right|}{\left|\mathbf{Z}_{n}\right|}=\frac{\varphi(n)}{n}=\frac{(p-1)(q-1)(r-1)}{p q r}=\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)\left(1-\frac{1}{r}\right) .
$$

Hence, this probability is very close to 1 for primes p, q, or r of classical cryptographic size.
4. As in classical RSA, the exponent e should be coprime with $\varphi(n)$. With this modulus, this corresponds to the condition $\operatorname{gcd}(e,(p-1)(q-1)(r-1))=1$. The decryption exponent is $d=$ $e^{-1} \bmod (p-1)(q-1)(r-1)$.
5. We extract an e th root componentwise on $\left(c_{p}, c_{q}, c_{r}\right)$ in $\mathbf{Z}_{p} \times \mathbf{Z}_{q} \times \mathbf{Z}_{r}$. To this end, we first compute $d_{p}:=e^{-1} \bmod p-1, d_{r}:=e^{-1} \bmod r-1, d_{r}:=e^{-1} \bmod r-1$. The plaintext is retrieved by evaluating

$$
\Psi^{-1}\left(c_{p}^{d_{p}} \bmod p, c_{q}^{d_{q}} \bmod q, c_{r}^{d_{r}} \bmod r\right) .
$$

6. e_{p} is an integer such that it is a multiple of q and r. So, we can write e_{p} of the form $k q r$, where k is any integer. Since, e_{p} must be congruent to 1 modulo p, it remains to choose k to be the inverse of $q r$ modulo p. Applying a similar reasoning for e_{q} and e_{r} gives us

$$
\left(e_{p}, e_{q}, e_{r}\right)=\left(q r \cdot\left((q r)^{-1} \bmod p\right), p r \cdot\left((p r)^{-1} \bmod q\right), p q \cdot\left((p q)^{-1} \bmod r\right)\right)
$$

Finally, using the linearity with respect to the scalar multiplication, we get
$\Psi^{-1}\left(x_{p}, x_{q}, x_{r}\right)=x_{p} e_{p}+x_{p} e_{p}+x_{p} e_{p}=x_{p} \cdot q r \cdot\left((q r)^{-1} \bmod p\right)+x_{q} \cdot p r \cdot\left((p r)^{-1} \bmod q\right)+x_{r} \cdot p q \cdot\left((p q)^{-1} \bmod r\right)$.
7. The complexity is mainly due to the modular exponentiations. With the classical RSA modulus, we need to perform 2 modular exponentiations modulo a number of size $s / 2$. The second variant requires 3 modular exponentiations modulo a number of size $s / 3$. So, the respective asymptotic complexities are within the order of magnitude of $2(s / 2)^{3}$ and $3(s / 3)^{3}$. So, the second variant is faster of a multiplicative factor of $9 / 4$.

Multi-Power RSA

8. We generate two prime numbers p and q of a given size by picking numbers at random until the MillerRabin test outputs "pseudo-prime". We set $n=p^{2} q$. Then, we select a public exponent $1 \geq e \geq \varphi\left(p^{2} q\right)$ such that $\operatorname{gcd}\left(e, \varphi\left(p^{2} q\right)\right)=\operatorname{gcd}(e, p(p-1)(q-1))=1$. The decryption exponent is obtained by computing $d:=e^{-1} \bmod p(p-1)(q-1)$. The public key is (n, e) and the secret key is (n, d). We encrypt a message $m \in \mathbf{Z}_{n}^{*}$, by computing $m^{e} \bmod n$. The decryption is performed as follows $c^{d} \bmod n$.
9. We need to find a k satisfying

$$
\left(x_{1}+k p\right)^{e} \equiv y_{1}+\ell p \quad\left(\bmod p^{2}\right)
$$

From this, we get

$$
x_{1}^{e}+e k p \equiv y_{1}+\ell p \quad\left(\bmod p^{2}\right)
$$

and

$$
k=\left(\frac{x_{1}^{e}-y_{1} \bmod p^{2}}{p}\right) e^{-1} \bmod p
$$

10. Let c be a given ciphertext. We first compute $c_{p}:=c \bmod p^{2}$ and $c_{q}:=c \bmod q$. In order to extract an eth root of c_{p} modulo p^{2}, we extract this root modulo p and apply the technique of the previous question to retrieve this root modulo p^{2}. So, we compute $m_{0 p}:=c_{p}^{d_{p}} \bmod p$, where $d_{p}:=e^{-1} \bmod p-1$ (d would be correct as well, but less efficient!). Then, using the previous technique, we retrieve $m_{p} \in \mathbf{Z}_{p^{2}}^{*}$ such that $m_{p}^{e} \equiv c_{p}\left(\bmod p^{2}\right)$. We also compute $m_{q}:=c_{q}^{d_{q}} \bmod q$, where $d_{q}=e^{-1} \bmod q-1$. Finally, inverting the CRT transform on the pair $\left(m_{p}, m_{q}\right)$ allows to retrieve the plaintext.
11. The complexity of the above method is mainly due to 2 modular exponentiations modulo a number of size $s / 3$. Hence, the asymptotic complexity is within the order of magnitude $2(s / 3)^{3}$. If we compare with the classical RSA with CRT, get a ratio of

$$
\frac{2(s / 2)^{3}}{2(s / 3)^{3}}=\frac{27}{8}
$$

