
Cryptography and Security Course

(Cryptography Part)

Final Exam Solution

Part 1: Collision within the Merkle-Damg̊ard Construction

1. H is a random function, hence the output is uniformly distributed, so it should be trivial to see
that

PrH [H(x) = H(x′)] =
1

2n

To extrapolate in more detail, there are (2n)2
N

functions h : {0, 1}N → {0, 1}n and the probability
that H is equal to any of these is uniformly distributed. For a given x, x′ where x 6= x′, we obtain

PrH [H(x) = H(x′)] =
∑

h

Pr[H = h] ∗ 1h(x)=h(x′) =
1

(2n)2N

∑

h

1h(x)=h(x′) =
(2n)2

N
−1

(2n)2N
=

1

2n

2. As the IV is fixed and is the same for both inputs x, x′, this probability is exactly the same as the
probability we computed in the previous section, so

Pr[h1(IV, x1) = h1(IV, x′

1)] =
1

2n

3. Both messages x, x′ have the same length ℓ, and pad = cst(N) where N = ℓ in this case, so we
have the same pad for both x, x′. Thus, this probability is exactly the same as what we computed
in the previous section. In fact,

Pr[H(x) = H(x′)|h1(IV, x1) 6= h1(IV, x′

1)] =
1

2n

4.

Pr[H(x) = H(x′)] = Pr[h1(IV, x1) = h1(IV, x′

1)] ∗ Pr[H(x) = H(x′)|h1(IV, x1) = h1(IV, x′

1)]
+ Pr[h1(IV, x1) 6= h1(IV, x′

1)] ∗ Pr[H(x) = H(x′)|h1(IV, x1) 6= h1(IV, x′

1)]
= 1

2n ∗ 1 + (1 − 1
2n) ∗ 1

2n = 1
2n−1 − 1

22n

for given x, x′ where x 6= x′.

5. We prove this by induction. For d = 1, by the previous section, this result is correct! Assuming
this result is correct for d, we prove it for d + 1.

For d + 1, if the input to hd+2 is (A, xd+2) and (A′, x′

d+2) for x, x′ respectively, we know that
xd+2 = x′

d+2 as both messages have the same length. Calling x1 as the message of length d
and x2 as the message of length d + 1 and B = H(x1) = H(x′

1) and C = H(x2) = H(x′

2) and
D = hd+2(A, pad) = hd+2(A

′, pad), we have

Pr(C) = Pr(D|B) ∗ Pr(B) + Pr(D|B) ∗ Pr(B) = 2−n

d
∑

i=0

(1 − 2−n)i + 2−n(1 − 2−n

d
∑

i=0

(1 − 2−n)i)

= 2−n

d+1
∑

i=0

(1 − 2−n)i

If d → ∞, we have a geometric series which converges, as 1 − 2−n < 1. So,

Pr[H(x) = H(x′)] =
1

2n
∗

1

1 − (1 − 2−n)
= 1

We can conclude that Merkle-Damg̊ard construction is not appropriate for arbitrary large message
sizes!

6. We first need to compute the probability that A = h1(IV, x1) = h1(IV, x′

1) and B = h2(a, x2) =
h1(a

′, x′

2), we have

Pr(B) = Pr(B|A) ∗ Pr(A) + Pr(B|A) ∗ Pr(A) = 2−2n + 2−n(1 − 2−n) = 2−n

With similar computations as before, we obtain

Pr[H(x) = H(x′)] = 2−n

d−1
∑

i=0

(1 − 2−n)i

7. First, look for the largest j such that xj 6= x′

j . Using the previous results, we have

Pr[H(x) = H(x′)] = 2−n

d−j+1
∑

i=0

(1 − 2−n)i

Part 2: RSA Variants with CRT Decryption

1. We need to inverse e modulo ϕ(n) = (p−1)(q−1). This can be perfomed using the extended Euclid
Algorithm.

2. Here, we have to extract the eth root of c modulo n. Using Chinese Remainder Theorem, this can
be obtained by extracting the eth root of c modulo p and the eth root of c modulo q. Let cp := c mod p,
cq := c mod q and dp := e−1 mod p − 1, dq := e−1 mod q − 1. We then compute

mp := cdp

p mod p and mq := cdq

q mod q.

By inverting the CRT transform on (mp, mq), we get the desired plaintext. Note that replacing both dp

and dq by d := e−1 mod (p − 1)(q − 1) would lead to the correct result as well.

Multi-Prime RSA

3. This probability corresponds to the ratio

|Z∗

n|

|Zn|
=

ϕ(n)

n
=

(p − 1)(q − 1)(r − 1)

pqr
=

(

1 −
1

p

) (

1 −
1

q

) (

1 −
1

r

)

.

Hence, this probability is very close to 1 for primes p, q, or r of classical cryptographic size.

4. As in classical RSA, the exponent e should be coprime with ϕ(n). With this modulus, this
corresponds to the condition gcd(e, (p − 1)(q − 1)(r − 1)) = 1. The decryption exponent is d =
e−1 mod (p − 1)(q − 1)(r − 1).

5. We extract an eth root componentwise on (cp, cq, cr) in Zp ×Zq ×Zr. To this end, we first compute
dp := e−1 mod p − 1, dr := e−1 mod r − 1, dr := e−1 mod r − 1. The plaintext is retrieved by evaluating

Ψ−1(cdp

p mod p, cdq

q mod q, cdr

r mod r).

6. ep is an integer such that it is a multiple of q and r. So, we can write ep of the form kqr, where k is
any integer. Since, ep must be congruent to 1 modulo p, it remains to choose k to be the inverse of qr
modulo p. Applying a similar reasoning for eq and er gives us

(ep, eq, er) = (qr · ((qr)−1 mod p), pr · ((pr)−1 mod q), pq · ((pq)−1 mod r)).

Finally, using the linearity with respect to the scalar multiplication, we get

Ψ−1(xp, xq, xr) = xpep+xpep+xpep = xp·qr·((qr)
−1 mod p)+xq·pr·((pr)−1 mod q)+xr·pq·((pq)−1 mod r).

7. The complexity is mainly due to the modular exponentiations. With the classical RSA modulus, we
need to perform 2 modular exponentiations modulo a number of size s/2. The second variant requires 3
modular exponentiations modulo a number of size s/3. So, the respective asymptotic complexities are
within the order of magnitude of 2(s/2)3 and 3(s/3)3. So, the second variant is faster of a multiplicative
factor of 9/4.

Multi-Power RSA

8. We generate two prime numbers p and q of a given size by picking numbers at random until the Miller-
Rabin test outputs “pseudo-prime”. We set n = p2q. Then, we select a public exponent 1 ≥ e ≥ ϕ(p2q)
such that gcd(e, ϕ(p2q)) = gcd(e, p(p−1)(q−1)) = 1. The decryption exponent is obtained by computing
d := e−1 mod p(p − 1)(q − 1). The public key is (n, e) and the secret key is (n, d). We encrypt a message
m ∈ Z

∗

n, by computing me mod n. The decryption is performed as follows cd mod n.

9. We need to find a k satisfying

(x1 + kp)e ≡ y1 + ℓp (mod p2).

From this, we get
xe

1 + ekp ≡ y1 + ℓp (mod p2)

and

k =

(

xe
1 − y1 mod p2

p

)

e−1 mod p.

10. Let c be a given ciphertext. We first compute cp := c mod p2 and cq := c mod q. In order to extract
an eth root of cp modulo p2, we extract this root modulo p and apply the technique of the previous

question to retrieve this root modulo p2. So, we compute m0p := c
dp

p mod p, where dp := e−1 mod p − 1
(d would be correct as well, but less efficient!). Then, using the previous technique, we retrieve mp ∈ Z

∗

p2

such that me
p ≡ cp (mod p2). We also compute mq := c

dq

q mod q, where dq = e−1 mod q − 1. Finally,
inverting the CRT transform on the pair (mp, mq) allows to retrieve the plaintext.

11. The complexity of the above method is mainly due to 2 modular exponentiations modulo a number
of size s/3. Hence, the asymptotic complexity is within the order of magnitude 2(s/3)3. If we compare
with the classical RSA with CRT, get a ratio of

2(s/2)3

2(s/3)3
=

27

8
.

