Cryptography and Security Exam 2nd Exam

20.2.2008

Crypto Part

1 AES-Hashing

In this exercise we consider a special hash function H defined as follows. To hash a message m with a length multiple of 256 bits, we split it into blocks of 256 bits m_1, \ldots, m_b . Then, we compute the encryption of i with key m_i using AES for $i = 1, \ldots, b$ and XOR them all together. We define

$$H(m_1||\cdots||m_b) = \bigoplus_{i=1}^b \mathsf{AES}_{m_i}(i)$$

- 1. What is the length of the digest?
 - Ideally, what should be the complexity of the best collision attack on H?
 - Ideally, what should be the complexity of the best preimage attach on H?
- 2. Derive a collision attack to find two messages m and m' of length 256 bits with same digest. What is its complexity?
- 3. Derive a preimage attack to find a preimage of the digest 0 and finding a message of length 512 bits.
 - What is its complexity?
- 4. Derive a second preimage attack finding a message of length 512 bits for any first preimage. What is its complexity?
- 5. Let m and m' be two messages of same bitlength 256b for an integer b. Let $m = m_1 || \cdots || m_b$ and $m' = m'_1 || \cdots || m'_b$ be the decomposition into 256-bit blocks. We assume that m and m' are selected such that $m_i \neq m'_i$ for $i = 1, \ldots, b$. Let $u_i = \mathsf{AES}_{m_i}(i) \oplus \mathsf{AES}_{m'_i}(i)$.

How large should b be so that with high probability, for any y there exists a subset I of $\{1, \ldots, b\}$ such that $y = \bigoplus_{i \in I} u_i$?

By selecting b this way, derive a preimage attack which finds a message of length 256b bits for any digest h. (Hint: set $y = h \oplus H(m)$.)

What is its complexity?

2 Modulo 11 Diffie-Hellman

1. Let $d_{n-1} \dots d_1 d_0$ be the decimal expansion of an integer N, i.e. $d_i \in \{0, 1, \dots, 9\}$ and

$$N = \sum_{i=0}^{n-1} 10^i \times d_i.$$

Show that $N \equiv d_0 - d_1 + \dots + (-1)^{n-1} d_{n-1} \pmod{11}$.

Deduce an algorithm to reduce an integer modulo 11 by mental computing.

2. What is the order of the \mathbf{Z}_{11}^* group?

Show that 2 is a generator of \mathbb{Z}_{11}^* .

What is the order of 3 in \mathbb{Z}_{11}^* ?

3. Consider the Diffie-Hellman protocol with prime number p = 11 and generator g = 2. Alice picks an exponent x = 9, sends $X = g^x \mod p$ to Bob and gets Y = 8 from him. Compute X.

Compute the Diffie-Hellman key *K*.

3 Modulo 1111 RSA

1. Let $d_{n-1} \dots d_1 d_0$ be the basis-100 expansion of an integer N, i.e. $d_i \in \{0, 1, \dots, 99\}$ and

$$N = \sum_{i=0}^{n-1} 100^i \times d_i.$$

Show that $N \equiv d_0 - d_1 + \dots + (-1)^{n-1} d_{n-1} \pmod{101}$.

Deduce an algorithm to reduce an integer modulo 101 by mental computing.

- 2. With the same notations, show that $N \equiv \sum_i d_i \pmod{11}$. Deduce an algorithm to reduce an integer modulo 11 by mental computing.
- 3. Let a and b be arbitrary integers and let $N = (6 \times 101 \times a + 46 \times 11 \times b) \mod 1111$. Show that $N \equiv a \pmod{11}$ and $N \equiv b \pmod{101}$. Show that N is the unique integer with this property in the [0, 1110] interval.
- 4. Consider RSA signatures with public key N = 1111 and e = 3. Compute the secret key d.

Compute the signature y of the message x = 2.