Cryptography and Security Exam

2nd Exam

20.2.2008

Crypto Part

1 AES-Hashing

In this exercise we consider a special hash function H defined as follows. To hash a message m with a length multiple of 256 bits, we split it into blocks of 256 bits m_{1}, \ldots, m_{b}. Then, we compute the encryption of i with key m_{i} using AES for $i=1, \ldots, b$ and XOR them all together. We define

$$
H\left(m_{1}\|\cdots\| m_{b}\right)=\bigoplus_{i=1}^{b} \mathrm{AES}_{m_{i}}(i)
$$

1. What is the length of the digest?

Ideally, what should be the complexity of the best collision attack on H ?
Ideally, what should be the complexity of the best preimage attach on H ?
2. Derive a collision attack to find two messages m and m^{\prime} of length 256 bits with same digest. What is its complexity?
3. Derive a preimage attack to find a preimage of the digest 0 and finding a message of length 512 bits.
What is its complexity?
4. Derive a second preimage attack finding a message of length 512 bits for any first preimage.

What is its complexity?
5. Let m and m^{\prime} be two messages of same bitlength $256 b$ for an integer b. Let $m=m_{1}\|\cdots\| m_{b}$ and $m^{\prime}=m_{1}^{\prime}\|\cdots\| m_{b}^{\prime}$ be the decomposition into 256-bit blocks. We assume that m and m^{\prime} are selected such that $m_{i} \neq m_{i}^{\prime}$ for $i=1, \ldots, b$. Let $u_{i}=\mathrm{AES}_{m_{i}}(i) \oplus \mathrm{AES}_{m_{i}^{\prime}}(i)$.
How large should b be so that with high probability, for any y there exists a subset I of $\{1, \ldots, b\}$ such that $y=\bigoplus_{i \in I} u_{i}$?
By selecting b this way, derive a preimage attack which finds a message of length $256 b$ bits for any digest h. (Hint: set $y=h \oplus H(m)$.)
What is its complexity?

2 Modulo 11 Diffie-Hellman

1. Let $d_{n-1} \ldots d_{1} d_{0}$ be the decimal expansion of an integer N, i.e. $d_{i} \in\{0,1, \ldots, 9\}$ and

$$
N=\sum_{i=0}^{n-1} 10^{i} \times d_{i}
$$

Show that $N \equiv d_{0}-d_{1}+\cdots+(-1)^{n-1} d_{n-1} \quad(\bmod 11)$.
Deduce an algorithm to reduce an integer modulo 11 by mental computing.
2. What is the order of the \mathbf{Z}_{11}^{*} group?

Show that 2 is a generator of \mathbf{Z}_{11}^{*}.
What is the order of 3 in \mathbf{Z}_{11}^{*} ?
3. Consider the Diffie-Hellman protocol with prime number $p=11$ and generator $g=2$. Alice picks an exponent $x=9$, sends $X=g^{x} \bmod p$ to Bob and gets $Y=8$ from him.
Compute X.
Compute the Diffie-Hellman key K.

3 Modulo 1111 RSA

1. Let $d_{n-1} \ldots d_{1} d_{0}$ be the basis-100 expansion of an integer N, i.e. $d_{i} \in\{0,1, \ldots, 99\}$ and

$$
N=\sum_{i=0}^{n-1} 100^{i} \times d_{i}
$$

Show that $N \equiv d_{0}-d_{1}+\cdots+(-1)^{n-1} d_{n-1} \quad(\bmod 101)$.
Deduce an algorithm to reduce an integer modulo 101 by mental computing.
2. With the same notations, show that $N \equiv \sum_{i} d_{i}(\bmod 11)$.

Deduce an algorithm to reduce an integer modulo 11 by mental computing.
3. Let a and b be arbitrary integers and let $N=(6 \times 101 \times a+46 \times 11 \times b) \bmod 1111$.

Show that $N \equiv a \quad(\bmod 11)$ and $N \equiv b \quad(\bmod 101)$.
Show that N is the unique integer with this property in the $[0,1110]$ interval.
4. Consider RSA signatures with public key $N=1111$ and $e=3$.

Compute the secret key d.
Compute the signature y of the message $x=2$.

