1 CBCMAC and Variants

1. Given some (known or chosen) sample pairs message-code $\left(m_{i}, c_{i}\right)$, the goal of a MAC forgery attack is to output a valid pair message-code (m, c).
2. It is simply $\mathcal{O}\left(2^{n}\right)$.
3. Since there is a xor between one message block let x_{i} and the result of $\operatorname{CBCMAC}\left(K, x_{1}, \ldots, x_{i-1}\right)$ they should have the same bit length:

$$
n=b .
$$

4. As seen in the course:

- choose m_{1} and obtain $c_{1} \leftarrow \operatorname{CBCMAC}\left(K, m_{1}\right)$
- choose m_{2} and obtain $c_{2} \leftarrow \operatorname{CBCMAC}\left(K, m_{2}\right)$
- choose B_{1}, let $m_{1}^{\prime}=m_{1} \| B_{1}$ and obtain $c_{1}^{\prime} \leftarrow \operatorname{CBCMAC}\left(K, m_{1}^{\prime}\right)$

Note that $c_{1}^{\prime}=\operatorname{CBCMAC}\left(K, B_{1} \oplus \operatorname{CBCMAC}\left(K, m_{1}\right)\right)=\operatorname{CBCMAC}\left(K, B_{1} \oplus c_{1}\right)$

- let $m_{2}^{\prime}=m_{2} \| B_{2}$ for some B_{2}

Note that c_{2}^{\prime} should be $\operatorname{CBCMAC}\left(K, B_{2} \oplus \operatorname{CBCMAC}\left(K, m_{2}\right)\right)=\operatorname{CBCMAC}\left(K, B_{2} \oplus c_{2}\right)$
So, if $B_{2} \oplus c_{2}=B_{1} \oplus c_{1}$ then $c_{2}^{\prime}=c_{1}^{\prime}$
Fix $B_{2}=B_{1} \oplus c_{1} \oplus c_{2}$

- output ($m 2 \| B_{2}, c_{1}^{\prime}$)

2 Modulo 33 Calculus

1. Note that we can write

$$
N=d_{n-1} \cdot 10^{n-1}+\ldots+d_{2} \cdot 10^{2}+d_{1} \cdot 10+d_{0}
$$

which can be written as

$$
N=\sum_{i=0}^{n-1} d_{i} \cdot 10^{i}
$$

So computing modulo 3 we find

$$
N \equiv \sum_{i=0}^{n-1} d_{i} \cdot 10^{i} \stackrel{10 \equiv 1}{\equiv} \sum_{i=0}^{n-1} d_{i} \quad(\bmod 3)
$$

2. To compute $N \bmod 3$:

$$
\begin{aligned}
& n=0 \\
& \text { for } i=0 \text { to } n-1 \\
& \quad n=n+d_{i} \bmod 3, \\
& \text { output } n
\end{aligned}
$$

3. Computing modulo 11we find

$$
N \equiv \sum_{i=0}^{n-1} d_{i} \cdot 10^{i} \stackrel{\begin{array}{c}
11^{i_{\text {even }}} \equiv 1, \\
1 i_{\text {odd }} \\
\equiv
\end{array} \equiv-1}{ } \sum_{i=0, i \text { even }}^{n-1} d_{i}-\sum_{i=0, i \text { odd }}^{n-1} d_{i} \quad(\bmod 3)
$$

4. To compute $N \bmod 11$:

$$
\begin{aligned}
& n=0 \\
& \text { for } i=0 \text { to } n-1 \\
& \quad n=n+(-1)^{i} \cdot d_{i} \bmod 11, \\
& \text { output } n
\end{aligned}
$$

5. $N=22 a+12 b=3 \cdot(7 a+4 b)+a \equiv a(\bmod 3)$ $N=22 a+12 b=11 \cdot(2 a+b)+b \equiv b(\bmod 11)$
6. By using the CRT we know \mathbb{Z}_{33} is isomorph to $\mathbb{Z}_{3} \times \mathbb{Z}_{11}$. So, any $(a, b) \in \mathbb{Z}_{3} \times \mathbb{Z}_{11}$ has a unique representation in \mathbb{Z}_{33}.
7. First compute $12341234 \bmod 3: 12341234 \equiv 1+2+3+4+1+2+3+4 \equiv 2(\bmod 3)$. The order of \mathbb{Z}_{3}^{*} is 2 . So, compute $56789 \bmod 2=1$. So,

$$
a=12341234^{56789} \equiv 2^{1} \equiv 2 \quad(\bmod 3)
$$

Then, compute $12341234 \bmod 11: 12341234 \equiv 4-3+2-1+4-3+2-1 \equiv 4(\bmod 11)$. The order of \mathbb{Z}_{11}^{*} is 10 . So, compute $56789 \bmod 10=9$. So,

$$
b=12341234^{56789} \equiv 4^{9} \equiv 4^{-1} \equiv 3 \quad(\bmod 11)
$$

Finally compute

$$
N=22 a+12 b \bmod 33=14
$$

3 RSA with Faulty Multiplier

1. Write

$$
\sum_{i, j} y_{i} \cdot y_{j}^{*} \cdot 2^{32(i+j)}
$$

2. At least once there will be the multiplication α times β. So, there will be an incorrect value and the square y^{2} will be incorrect.
3.

$$
x>0 \Rightarrow y>2^{\ell-1}+2^{\ell-3} \Rightarrow y>p
$$

and

$$
x<2^{\ell-3} \Rightarrow y<2^{\ell-1}+2^{\ell-3}+2^{\ell-3} \Rightarrow y<2^{\ell-1}+2^{\ell-2} \Rightarrow y<q
$$

4. Note that y contains at least one 32 -bit word equal to α and another equal to β. Since $y<q$ we will have $y_{q}=q$. So α and β will be used in a square which lead us to incorrect decryption of y_{q}. So, $y_{q}^{\prime}=y^{\prime} \bmod q \neq y_{q}$
5. Note that y contains at least one 32 -bit word equal to α and another equal to β. Since $y>p$ we will have $y_{p} \neq p$ and with high probability α and β will disappear and there will be no computation error. So, $y_{p}^{\prime}=y^{\prime} \bmod p=y_{p}$.
6. If an error occured, we have two different values y and y^{\prime}. Note that $y_{p}=y \bmod p$ is equal to $y_{p}^{\prime}=y^{\prime} \bmod p$. So, $y-y_{p}$ is a multiple of p as well as $y^{\prime}-y_{p}$.
Computing $\operatorname{gcd}\left(y-y_{p}, y^{\prime}-y_{p}\right)$, we will obtain p.
Then obtain q by computing N / p.
