SECURITY AND CRYPTOGRAPHY LABORATORY

Family Name: \qquad
\qquad
\qquad

Security and Cryptography

Fall semester 2007
Midterm Exam
November $1^{\text {st }}, 2007$

Duration: 105 minutes

Part 1 / 2

This document consists of 8 pages.

Instructions

Documents are not allowed apart from linguistic dictionaries.

Electronic devices are not allowed.

Answers must be written on the exercises sheet.

This exam contains 2 independent exercises
Answers can be either in French or English.
Questions of any kind will certainly not be answered. Potential errors in these sheets are part of the exam.

You have to put your full name on the first page and have all pages stapled.

1 Attacks on a Simple Cipher

Let $C:\{0,1\}^{n} \times\{0,1\}^{m} \mapsto\{0,1\}^{n}$ be a n-bit block cipher with m-bit keys. C consists of 2 rounds of a Feistel scheme as depicted on Figure 1. The plaintext is denoted by $x \in\{0,1\}^{n}$ and the output ciphertext by $y \in\{0,1\}^{n}$.

Figure 1: C : a 2-round Feistel scheme.
We use the notation $x_{\ell}, x_{r} \in\{0,1\}^{\frac{n}{2}}$ (resp. $y_{\ell}, y_{r} \in\{0,1\}^{\frac{n}{2}}$) for the plaintext (resp. ciphertext) on the left and right leaves, i.e., $x=x_{\ell} \| x_{r}$ and $y=y_{\ell} \| y_{r}$ where the operator " $\|$ " denotes the concatenation.

1. Draw the inverse scheme for the Feistel scheme of Figure 1.

Now, we will define the round functions. Let the key $k \in\{0,1\}^{n}$, i.e. here $m=n$, and let $k_{1}, k_{2} \in\{0,1\}^{\frac{n}{2}}$ be respectively the left and right part of k. We consider that the round function F_{i} with input α simply "xor" the input with the round key k_{i}, i.e. the output is

$$
\beta=F_{i}(\alpha)=\alpha \oplus k_{i} .
$$

2. Write y_{ℓ} and y_{r} in terms of $x_{\ell}, x_{r}, k_{1}, k_{2}$.
3. Explain how it is possible to recover the key K using one plaintext-attack query, i.e. based on a plaintext-ciphertext pair (x, y).

Now, we use C from Figure 1 to build the cipher $2 C .2 C$ is built by concatenating two times C as decpited on Figure 2.

Figure 2: $2 C$.
4. Considering C as a black-box, which well-known attack can be applied?
\square
5. Write y_{ℓ} and y_{r} in terms of $x_{\ell}, x_{r}, k_{a 1}, k_{a 2}, k_{b 1}, k_{b 2}$.
6. Is a decryption attack now possible? Explain your answer.
7. Let y and y^{\prime} be two ciphertexts. What can we say about $y \oplus y^{\prime}$? What is the consequence?

2 Linear Algebra

1. Compute $17^{129} \bmod 19$. Give the details.
2. Compute the inverse of 7 in \mathbb{Z}_{143}^{*}, i.e. compute $7^{-1} \bmod 143$. Give the details.

Any attempt to look at the content of these pages
 before the signal will be severly punished.

Please be patient.

