

Family Name:	
First Name:	
Section:	

Security and Cryptography

Midterm Exam

October 30^{th} , 2008

Duration: 1 hour 45 min

This document consists of 12 pages.

Instructions

Documents are *not* allowed apart from linguistic dictionaries.

Electronic devices (including *calculators*) are *not* allowed.

Answers must be written on the exercises sheet.

This exam contains 3 *independent* exercises.

Answers can be either in French or English.

Questions of any kind will certainly *not* be answered.

Potential errors in these sheets are part of the exam.

You have to put your full name on the first page and have all pages *stapled*.

1 Square roots of 53 modulo 221

The purpose of this exercise is to solve in \mathbf{Z}_n the equation

 $x^2 \equiv a \pmod{n}$

with n = 221 and a = 53.

1. Let n = pq be the factorization of n into prime numbers where p is the smallest one. Compute p and q.

2. Solve in \mathbf{Z}_p the equation $x^2 \equiv a$.

3. Solve in \mathbf{Z}_q the equation $x^2 \equiv a$.

4. Reduce $\alpha = 170 \mod p$ and modulo q.

5. Reduce $\beta = 1 - \alpha$ modulo p and modulo q.

6. Given arbitrary u and v, reduce $u\alpha+v\beta$ modulo p and q.

7. List all roots in \mathbf{Z}_n of the equation $x^2 \equiv a$.

2 RSA with exponent 3

In this exercise we consider an RSA modulus n = pq where p and q are large prime numbers (here, by "large" we mean at least equal to 5). We consider a valid RSA exponent e for RSA.

1. Show that neither $p \mod 3$ nor $q \mod 3$ can be equal to 0.

2. Under which condition e is a valid exponent for a modulus n?

From now on, we will assume that e = 3.

3. Show that neither p-1 nor q-1 can be multiples of 3.

4. Deduce that $p \mod 3 = q \mod 3 = 2$.

5. What is the value of $n \mod 3$?

6. For any digits $d_0, \ldots, d_{\ell-1}$, show that

$$\left(\sum_{i=0}^{\ell-1} d_i 10^i\right) \mod 3 = \left(\sum_{i=0}^{\ell-1} (d_i \bmod 3)\right) \mod 3$$

7. Show that e = 3 is not a valid RSA exponent for the following RSA modulus:

 $n = 777\,575\,993$

3 Computation in GF(16)

Let us consider the polynomial $P(x) = x^4 + x + 1$ in $\mathbb{Z}_2[x]$.

1. Show that P has no root in \mathbb{Z}_2 .

2. Deduce that P has no factor of degree 1 in $\mathbb{Z}_2[x]$.

3. Enumerate all polynomials of degree 2 in $\mathbb{Z}_2[x]$ and identify the one Q(x) which is irreducible.

4. Show that Q(x) does not divide P(x).

5. Deduce that P(X) is irreducible.

6. We define

$$\mathsf{GF}(16) \leftrightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$$

where an hexa decimal $u=\alpha 2^0+\beta\times 2^1+\gamma\times 2^2+\delta\times 2^3$ with $\alpha,\beta,\gamma,\delta\in\{0,1\}$ is considered to represent the polynomial

$$\alpha + \beta x + \gamma x^2 + \delta x^3$$
 in GF(16)

Those polynomials in $\mathbf{Z}_2[x]$ are taken modulo P(x).

(a) What is the $\mathsf{GF}(16)$ -sum of 6 and A?

(b) What is the $\mathsf{GF}(16)$ -multiplication of 6 and 1?

(c) What is the $\mathsf{GF}(16)$ -multiplication of 6 and 2?

(d) What is the $\mathsf{GF}(16)$ -multiplication of 6 and 3?

(e) What is the $\mathsf{GF}(16)$ -inverse of 2?

Any attempt to look at the content of these pages before the signal will be severly punished.

Please be patient.