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1 Square roots of 53 modulo 221

The purpose of this exercise is to solve in Zn the equation

x2 ≡ a (mod n)

with n = 221 and a = 53.

1. Let n = pq be the factorization of n into prime numbers where p is the smallest one.
Compute p and q.

2. Solve in Zp the equation x2 ≡ a.

3. Solve in Zq the equation x2 ≡ a.
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4. Reduce α = 170 modulo p and modulo q.

5. Reduce β = 1 − α modulo p and modulo q.
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6. Given arbitrary u and v, reduce uα + vβ modulo p and q.

7. List all roots in Zn of the equation x2 ≡ a.
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2 RSA with exponent 3

In this exercise we consider an RSA modulus n = pq where p and q are large prime numbers
(here, by “large” we mean at least equal to 5). We consider a valid RSA exponent e for RSA.

1. Show that neither p mod 3 nor q mod 3 can be equal to 0.

2. Under which condition e is a valid exponent for a modulus n?
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From now on, we will assume that e = 3.

3. Show that neither p − 1 nor q − 1 can be multiples of 3.

4. Deduce that p mod 3 = q mod 3 = 2.

5. What is the value of n mod 3?
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6. For any digits d0, . . . , dℓ−1, show that

(

ℓ−1
∑

i=0

di10
i

)

mod 3 =

(

ℓ−1
∑

i=0

(di mod 3)

)

mod 3

7. Show that e = 3 is not a valid RSA exponent for the following RSA modulus:

n = 777 575 993
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3 Computation in GF(16)

Let us consider the polynomial P (x) = x4 + x + 1 in Z2[x].

1. Show that P has no root in Z2.

2. Deduce that P has no factor of degree 1 in Z2[x].
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3. Enumerate all polynomials of degree 2 in Z2[x] and identify the one Q(x) which is irre-
ducible.

4. Show that Q(x) does not divide P (x).

5. Deduce that P (X) is irreducible.
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6. We define
GF(16) ↔ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,C, D,E, F}

where an hexadecimal u = α20+β×21+γ×22+δ×23 with α, β, γ, δ ∈ {0, 1} is considered
to represent the polynomial

α + βx + γx2 + δx3 in GF(16)

Those polynomials in Z2[x] are taken modulo P (x).

(a) What is the GF(16)-sum of 6 and A?

(b) What is the GF(16)-multiplication of 6 and 1?

(c) What is the GF(16)-multiplication of 6 and 2?
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(d) What is the GF(16)-multiplication of 6 and 3?

(e) What is the GF(16)-inverse of 2?
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