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1 Square roots of 53 modulo 221

The purpose of this exercise is to solve in Zn the equation

x2 ≡ a (mod n)

with n = 221 and a = 53.

1. Let n = pq be the factorization of n into prime numbers where p is the smallest one. Compute
p and q.

Since 13× 17 = 221 we have p = 13 and q = 17.

2. Solve in Zp the equation x2 ≡ a.

We have a mod p = 53 mod 13 = 1. Since p is a prime number the only square roots
of +1 are +1 and −1. That is, x mod p is either 1 or 12.

3. Solve in Zq the equation x2 ≡ a.

We have a mod q = 2. We have a
q−1
2 = 28 (mod 17). This is (−1)4 mod 16 which

is 1, so a is a quadratic residue. To find a square root, we can try by exhaustive
search as q is pretty small. The list of squares modulo 17 is 1, 4, 9, 16, 8, 2, . . . so 6
is a quare root of 1. The second square root is −6 = 11 (mod 17).

4. Reduce α = 170 modulo p and modulo q.

We compute 170 mod p = 1 and 170 mod q = 0

5. Reduce β = 1− α modulo p and modulo q.

Clearly, (1− 170) mod p = 0 and (1− 170) mod q = 1
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6. Given arbitrary u and v, reduce uα + vβ modulo p and q.

Clearly, (uα + vβ) mod p = u mod p and (uα + vβ) mod q = v mod q

7. List all roots in Zn of the equation x2 ≡ a.

We use the Chinese remainder theorem. We have x2 mod n = a ⇐⇒ x2 mod p =
a mod p and x2 mod q = a mod q. The right hand side suggests 4 solutions such that
x mod p ∈ {1, 12} and x mod q ∈ {6, 11}. Using the previous question we compute
x by

1× α + 6× β = 170× (1− 6) + 6
1× α− 6× β = 170× (1 + 6)− 6

−1× α + 6× β = 170× (−1− 6) + 6
−1× α− 6× β = 170× (−1 + 6)− 6

We do the computation modulo 221 and obtain x ∈ {40, 79, 142, 181}.
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2 RSA with exponent 3

In this exercise we consider an RSA modulus n = pq where p and q are large prime numbers (here,
by “large” we mean at least equal to 5). We consider a valid RSA exponent e for RSA.

1. Show that neither p mod 3 nor q mod 3 can be equal to 0.

Since p and q are large, they are larger than 3. Since they are prime, they are not
divisible by 3.

2. Under which condition e is a valid exponent for a modulus n?

e is a valid exponent iff it is coprime with ϕ(n) = (p− 1)(q − 1).

From now on, we will assume that e = 3.

3. Show that neither p− 1 nor q − 1 can be multiples of 3.

If e = 3 is a valid exponent, then (p− 1)(q− 1) is coprime with 3, which means that
it is not divisible by 3. Therefore, neither p− 1 nor q − 1 can be divisible by 3.

4. Deduce that p mod 3 = q mod 3 = 2.

Due to the previous questions, p mod 3 is neither 0 nor 1 so it must be 2. The same
holds for q.

5. What is the value of n mod 3?

We have n = p× q = 22 = 1 (mod 3).

6. For any digits d0, . . . , d`−1, show that
(

`−1∑

i=0

di10i

)
mod 3 =

(
`−1∑

i=0

(di mod 3)

)
mod 3

This directly comes from 10 mod 3 = 1.

7. Show that e = 3 is not a valid RSA exponent for the following RSA modulus:

n = 777 575 993

From the previous question we have n mod 3 = (1+1+1+2+1+2+0+0+0) mod 3 =
2 which is not equal to 1. So, either n is not a product of two primes or 3 is not a
valid exponent. In any case, (n, 3) is not a valid RSA public key.
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3 Computation in GF(16)

Let us consider the polynomial P (x) = x4 + x + 1 in Z2[x].

1. Show that P has no root in Z2.

We have P (0) = 1 and P (1) = 1 so it has no root in Z2.

2. Deduce that P has no factor of degree 1 in Z2[x].

Having a factor of degree 1 is equivalent to having a root. So, P has no factor of
degree 1.

3. Enumerate all polynomials of degree 2 in Z2[x] and identify the one Q(x) which is irreducible.

We have x2, x2 + 1, x2 + x, x2 + x + 1. We can check that all have roots, except
x2 + x + 1. So, only x2 + x + 1 remains as a candidate for being irreducible. Since
it has degree 2, having no factor of degree 1 is enough to guaranty irreducibility.
Hence, Q(x) = x2 + x + 1 is the only irreducible polynomial of degree 2.

4. Show that Q(x) does not divide P (x).

We have P (x) = x4 + x + 1 = (x2 + x)×Q(x) + 1 so P (x) is not divisible by Q(x).

5. Deduce that P (X) is irreducible.

P (x) has degree 4 and no factor of degree 1. Thus, either it has two irreducible
factors of degree 2 or it is irreducible. Since Q(x) is the only irreducible polynomial
of degree 2 and is not a factor of P (x), P (x) must be irreducible.
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6. We define
GF(16) ↔ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,C, D,E, F}

where an hexadecimal u = α20 + β× 21 + γ× 22 + δ× 23 with α, β, γ, δ ∈ {0, 1} is considered
to represent the polynomial

α + βx + γx2 + δx3 in GF(16)

Those polynomials in Z2[x] are taken modulo P (x).

(a) What is the GF(16)-sum of 6 and A?

We have 6 = 22 + 21 so it represents x2 + x. We have A = 23 + 21 so it represents
x3 + x. Thus, the sum is x3 + x2 which is represented by 23 + 22 = C: 6 ¢ A = C.

(b) What is the GF(16)-multiplication of 6 and 1?

Since 1 represents 1, the multiplication by 1 is trivial: 6 £ 1 = 6.

(c) What is the GF(16)-multiplication of 6 and 2?

Since 2 represents x, the multiplication by 2 can be done by shifting bits (if no carry).
6 represents x2 + x which is shifted to x3 + x2, represented by C: 6 £ 2 = C.

(d) What is the GF(16)-multiplication of 6 and 3?

We can check that 3 = 2¢1 (indeed). We have 6£3 = (6£2)¢(6£1) = C ¢6 = A.

(e) What is the GF(16)-inverse of 2?

We have x4 + x + 1 = x × (x3 + 1) + 1 so 0 = (2 £ 9) ¢ 1 which can also writes
2 £ 9 = 1: 9 is the inverse of 2.
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