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1 Vigenère Cipher

We formalize the Vigenère Cipher as follows:

• Let A = Z26 denote the alphabet, A∗ denotes the set of all finite sequences (or strings)
of elements in A. For s ∈ A∗ we denote by |s| its length and si its ith term for i =
0, 1, . . . , |s| − 1.

• The plaintext space, key space, and ciphertext space are A∗.

• We assume that given a random plaintext X = (X0, . . . , Xn−1) of length n, all Xi are
independent with distribution p. That is

Pr
[
X = x

∣∣|X| = n
]

=
n−1∏
i=0

p(xi)

• We assume that given a key K = (K0, . . . ,Kk−1) of length k, all Ki are independent and
follow a uniform distribution. That is

Pr
[
K = κ

∣∣|K| = k
]

=
1

26k

• The ciphertext is defined by

Yi = Xi +Ki mod k mod 26

for i = 0, 1, . . . , n− 1.

1. Assuming that the key is of length k, what is the entropy of K in terms of bits?

2. How large should be k to have an equivalent key length of 80 bits?
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3. Given a string s, we define the index of coincidence Ic(s) as the probability that two
elements of s selected at random at different positions are equal. Given c ∈ A, let ns(c)
be the number of index positions i such that si = c.

Show that
Ic(s) =

∑
c∈A

ns(c)(ns(c)− 1)
|s|(|s| − 1)

4. Let X be a random plaintext of length n = |X|. Express the expected value Ip = E(Ic(X))
in terms of n and p.
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We denote Iu the value of Ip when p is the uniform distribution.
Deduce Iu from the previous question.

5. Let n = qk+r be the Euclidean division of n by k. We pick I and J different with uniform
distribution and let E be the event that I mod k = J mod k.

Show that Pr[YI = YJ |¬E ] = Iu.

Show that Pr[YI = YJ |E ] = Ip.
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Show that
Pr[E ] =

q(2n− k(q + 1))
n(n− 1)

Deduce the value E(Ic(Y )).
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Using n � 1, q ≈ n
k and E(Ic(Y )) ≈ Ic(Y ), deduce a formula to estimate k based on

Ic(Y ).
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2 Secure Channel

1. Assuming that Alice and Bob share a secret key K and want to set up a secure channel,
explain what are the properties of

• message confidentiality

• message authenticity

• message integrity

• message sequentiality
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2. The GSM secure channel works by sending m⊕A5(KC,Count) where KC is an encryption
key and Count is an implicit message counter.

Which of the properties of Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)
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3. The Bluetooth secure channel works by sending (m‖CRC(m))⊕ E0(Kc,CLK) where Kc is
an encryption key, CLK is the clock value, and CRC is a cyclic redundancy check function
(i.e. a linear mapping).

Which of the properties in Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)
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4. The WEP secure channel works by sending IV‖((m‖CRC(m)) ⊕ RC4(K, IV)) where K is
an encryption key, IV is an asynchronous initial vector, and CRC is a cyclic redundancy
check function (i.e. a linear mapping).

Which of the properties in Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)
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5. The TLS protocol works by sending EncK1(m‖MACK2(m‖seq)) where K1 and K2 are two
secret keys and seq is an implicit message counter.

Which of the properties in Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)
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6. The biometric passport works by sending EncKSenc(m)‖MACKSmac(EncKSenc(m)) where
KSenc and KSmac are two secret keys.

Which of the properties in Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)
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3 TCHO Encryption

The goal of the exercise is to study the TCHO public-key cryptosystem.

• We consider the usual + and × operations in Z2.

• The plaintext space is {0, 1} (we encrypt a single bit) and the ciphertext space is {0, 1}`
(the ciphertexts are `-bit long).

• The public key is a polynomial of degree d with coefficients in Z2 denoted P (z) = P0 +
P1z + · · ·+ Pdz

d.

• The secret key is a polynomial of degree dK with coefficients in Z2 denoted K(z) =
K0 +K1z + · · ·+KdK

zdK .

• These two polynomials are such that:

– P (z) divides K(z) in Z2[z];

– K(z) has a total number w of nonzero coefficients which is low. We assume that w
is odd.

• We define four elementary operations.

– Repetition: Given a plaintext x, we define the `-bit vector C(x) = (x, . . . , x) (all
components of C(x) are equal to x).

– LFSR: Given a d-bit vector r = (r0, r1, . . . , rd−1), we define its expansion to an `-bit
vector (` > d) by using the relation

ri+d =
d−1∑
j=0

ri+jPj

for i = 0, . . . , `− 1− d in Z2.
Note that this relation is linear. We let LP (r) = (r0, r1, . . . , r`−1).

– Biased sequence: Given a random seed r′ we define Sγ(r′) as a random `-bit string
such that the probability that each bit is 0 is given by 1+γ

2 (its probability of being
1 is thus 1−γ

2 ).

– Cancellation: Given y ∈ Z`2, we define K ⊗ y ∈ Z`−dK
2 by

(K ⊗ y)i =
dK∑
j=0

yi+jKj

for i = 0, . . . , `− 1− d in Z2.

• Encryption: To encrypt the bit x with randomness r and r′, compute:

EncP (x; r, r′) = C(x) + LP (r) + Sγ(r′)

with component-wise addition over Z2.
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1. Show that given C(x) + Sγ(r′), the plaintext x can be recovered if γ is not too small.
What is the complexity of the attack in terms of `?

2. Show that given C(x) +LP (r), the plaintext x can be recovered. What is the complexity
of the attack in terms of d?
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3. Show that for any x ∈ Z2 we have K ⊗ C(x) = (x, x, . . . , x).

4. Show that for any r ∈ Zd2 we have K ⊗ LP (r) = 0.
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5. Show that for a random r′ all bits ofK⊗Sγ(r′) have the same distribution and a probability
of being 0 of 1

2(1 + γw).
Hint: For any i, (K ⊗ Sγ(r′))i is the XOR of exactly w independent bits of bias γ.

6. Given EncP (x; r, r′) and K(z), give an algorithm to recover x. What is its complexity in
terms of the parameters dK and `?
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7. To study the security, give an algorithm to recover K(z) given P (z), dK and w. What is
its complexity?
Hint: if K(z) = 1 +

∑w−1
j=1 z

ij , it satisfies a condition which can be written

1 +

w−1
2∑
j=1

zij =
w−1∑

j=w−1
2

+1

zij (mod P (z))
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