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1 Vigenère Cipher

We formalize the Vigenère Cipher as follows:

• Let A = Z26 denote the alphabet, A∗ denotes the set of all finite sequences (or strings) of
elements in A. For s ∈ A∗ we denote by |s| its length and si its ith term for i = 0, 1, . . . , |s|−1.

• The plaintext space, key space, and ciphertext space are A∗.

• We assume that given a random plaintext X = (X0, . . . , Xn−1) of length n, all Xi are inde-
pendent with distribution p. That is

Pr
[
X = x

∣∣|X| = n
]
=

n−1∏
i=0

p(xi)

• We assume that given a key K = (K0, . . . ,Kk−1) of length k, all Ki are independent and
follow a uniform distribution. That is

Pr
[
K = κ

∣∣|K| = k
]
=

1

26k

• The ciphertext is defined by
Yi = Xi +Ki mod k mod 26

for i = 0, 1, . . . , n− 1.

1. Assuming that the key is of length k, what is the entropy of K in terms of bits?

It is k log2(26) ≈ 4.7k.

2. How large should be k to have an equivalent key length of 80 bits?

We should have k ≥ 80
log2(26)

≈ 17.02 so k = 18 should be enough.

2



3. Given a string s, we define the index of coincidence Ic(s) as the probability that two elements
of s selected at random at different positions are equal. Given c ∈ A, let ns(c) be the number
of index positions i such that si = c.

Show that

Ic(s) =
∑
c∈A

ns(c)(ns(c)− 1)

|s|(|s| − 1)

We pick two index positions I and J at random such that they are different. That
is, for any i and j such that i ̸= j we have Pr[I = i, J = j] = 1

|s|(|s|−1) . We have

Ic(s) = Pr[sI = sJ ] =
∑

c∈A Pr[sI = sJ = c]. Now, Pr[sI = sJ = c] is ns(c)(ns(c)−1)
|s|(|s|−1)

so we obtain the formula.

4. Let X be a random plaintext of length n = |X|. Express the expected value Ip = E(Ic(X))
in terms of n and p.

We have ns(c) =
∑n−1

i=0 1Xi=c so E(ns(c)) = np(c). Similarly, we have ns(c)
2 =∑n−1

i,j=0 1Xi=Xj=c. If i = j, we have E(1Xi=Xj=c) = p(c). If i ̸= j, we have

E(1Xi=Xj=c) = p(c)2. So, E(ns(c)
2) = np(c) + n(n − 1)p(c)2. By linearity of

E, we thus obtain

Ip = E(Ic(X)) =
∑
c∈A

p(c)2
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We denote Iu the value of Ip when p is the uniform distribution.
Deduce Iu from the previous question.

It is Iu = 1
26

5. Let n = qk + r be the Euclidean division of n by k. We pick I and J different with uniform
distribution and let E be the event that I mod k = J mod k.

Show that Pr[YI = YJ |¬E ] = Iu.

We have E(Ic(Y )) = Pr[YI = YJ ] where the probability holds over the distribution
of I, J , X, and K. Clearly,

Pr[YI = YJ |¬E ] = Pr[XI +KI mod k ≡ XJ +KJ mod k (mod 26)|¬E ] = Iu

since KI mod k and KJ mod k are independent and uniformly distributed.

Show that Pr[YI = YJ |E ] = Ip.

We have

Pr[YI = YJ |E ] = Pr[XI +KI mod k ≡ XJ +KJ mod k (mod 26)|E ] = Pr[XI = XJ |E ]

since KI mod k = KJ mod k. We split this probability over all possible values of
I mod k. In each case, we obtain something which is Ip on average since all plaintext
elements are independent. Thus, Pr[YI = YJ |E ] = Ip.
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Show that

Pr[E ] = q(2n− k(q + 1))

n(n− 1)

For i = 0, 1, . . . , r − 1, we have Pr[I mod k = J mod k = i] = (q+1)q
n(n−1) . For i =

r, r + 1, . . . , k − 1, we have Pr[I mod k = J mod k = i] = q(q−1)
n(n−1) . Thus,

Pr[E ] = r
(q + 1)q

n(n− 1)
+ (k − r)

q(q − 1)

n(n− 1)
=

q(2n− k(q + 1))

n(n− 1)

Deduce the value E(Ic(Y )).

By collecting all previous results we have

E(Ic(Y )) = Ip Pr[E ] + Iu(1− Pr[E ]) = (Ip − Iu) Pr[E ] + Iu

Using the expression of Pr[E ] we finally obtain

E(Ic(Y )) = (Ip − Iu)q
2n− k(q + 1)

n(n− 1)
+ Iu
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Using n ≫ 1, q ≈ n
k and E(Ic(Y )) ≈ Ic(Y ), deduce a formula to estimate k based on Ic(Y ).

We have

Ic(Y ) ≈ (Ip − Iu)
n− k

nk
+ Iu

We invert the previous formula. We obtain

k ≈ 1
Ic(Y )−Iu
Ip−Iu

+ 1
n
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2 Secure Channel

1. Assuming that Alice and Bob share a secret key K and want to set up a secure channel,
explain what are the properties of

• message confidentiality

• message authenticity

• message integrity

• message sequentiality

• message confidentiality: only the legitimate receiver can receive the message in
clear

• message authenticity: only the legitimate sender can send a message

• message integrity: the message cannot be modified when being transmitted

• message sequentiality: the order of messages in a protocol cannot be modified
(no message swap, no repetition, no deletion)
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2. The GSM secure channel works by sending m⊕A5(KC,Count) where KC is an encryption key
and Count is an implicit message counter.

Which of the properties of Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)

• message confidentiality: protected (assuming that A5 is secure and that the
key does not leak for external reasons). As a matter of fact, there are several
A5 algorithms, including some weak ones and they all use the same KC. So,
an active adversary can change the cipher to a weak one and recover KC so
confidentiality is not guaranteed (but this is not due to the secure channel).

• message authenticity: not specifically protected by a message authentication
code. It is protected in the sense that an adversary cannot push a message
which makes sense without knowing KC.

• message integrity: clearly not protected. An adversary can XOR a δ of her
choice to the transmitted message. The effect is that a cleartext m will be
replaced by m⊕ δ.

• message sequentiality: protected by using the counter.
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3. The Bluetooth secure channel works by sending (m∥CRC(m))⊕ E0(Kc,CLK) where Kc is an
encryption key, CLK is the clock value, and CRC is a cyclic redundancy check function (i.e. a
linear mapping).

Which of the properties in Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)

• message confidentiality: protected (assuming that E0 is secure and that the key
does not leak for external reasons).

• message authenticity: not specifically protected by a message authentication
code. It is protected in the sense that an adversary cannot push a message
which makes sense without knowing Kc.

• message integrity: Not protected. The CRC protection is void. An adversary
can XOR (δ∥CRC(δ)) for a δ of her choice to the transmitted message. The
effect is that a cleartext m will be replaced by m⊕ δ.

• message sequentiality: semi-protected by using the clock value. The message
sequence cannot be modified except by deleting some messages.
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4. The WEP secure channel works by sending IV∥((m∥CRC(m)) ⊕ RC4(K, IV)) where K is an
encryption key, IV is an asynchronous initial vector, and CRC is a cyclic redundancy check
function (i.e. a linear mapping).

Which of the properties in Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)

• message confidentiality: it would be protected if RC4 were secure in this asyn-
chronous mode, but this is not the case. So, it is not protected.

• message authenticity: not specifically protected by a message authentication
code. It is protected in the sense that an adversary cannot push a message
which makes sense with an unused IV without knowing K. It is enough to
know one plaintext and ciphertext to reuse the IV.

• message integrity: Not protected. The CRC protection is void. An adversary
can XOR (δ∥CRC(δ)) for a δ of her choice to the transmitted message. The
effect is that a cleartext m will be replaced by m⊕ δ.

• message sequentiality: not protected. IVs are meant to be used in any order
and even reused.
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5. The TLS protocol works by sending EncK1(m∥MACK2(m∥seq)) where K1 and K2 are two
secret keys and seq is an implicit message counter.

Which of the properties in Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)

• message confidentiality: protected by encryption.

• message authenticity: protected by a message authentication code.

• message integrity: protected by a message authentication code.

• message sequentiality: protected by using the counter.
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6. The biometric passport works by sending EncKSenc(m)∥MACKSmac(EncKSenc(m)) where KSenc
and KSmac are two secret keys.

Which of the properties in Q. 1 is guaranteed, which is not? Explain precisely your answer.
(If the answer is neither a clear yes nor a clear no, explain why.)

• message confidentiality: protected by encryption.

• message authenticity: protected by a message authentication code.

• message integrity: protected by a message authentication code.

• message sequentiality: not protected.
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3 TCHO Encryption

The goal of the exercise is to study the TCHO public-key cryptosystem.

• We consider the usual + and × operations in Z2.

• The plaintext space is {0, 1} (we encrypt a single bit) and the ciphertext space is {0, 1}ℓ (the
ciphertexts are ℓ-bit long).

• The public key is a polynomial of degree d with coefficients in Z2 denoted P (z) = P0+P1z+
· · ·+ Pdz

d.

• The secret key is a polynomial of degree dK with coefficients in Z2 denoted K(z) = K0 +
K1z + · · ·+KdKz

dK .

• These two polynomials are such that:

– P (z) divides K(z) in Z2[z];

– K(z) has a total number w of nonzero coefficients which is low. We assume that w is
odd.

• We define four elementary operations.

– Repetition: Given a plaintext x, we define the ℓ-bit vector C(x) = (x, . . . , x) (all
components of C(x) are equal to x).

– LFSR: Given a d-bit vector r = (r0, r1, . . . , rd−1), we define its expansion to an ℓ-bit
vector (ℓ > d) by using the relation

ri+d =

d−1∑
j=0

ri+jPj

for i = 0, . . . , ℓ− 1− d in Z2.

Note that this relation is linear. We let LP (r) = (r0, r1, . . . , rℓ−1).

– Biased sequence: Given a random seed r′ we define Sγ(r
′) as a random ℓ-bit string

such that the probability that each bit is 0 is given by 1+γ
2 (its probability of being 1 is

thus 1−γ
2 ).

– Cancellation: Given y ∈ Zℓ
2, we define K ⊗ y ∈ Zℓ−dK

2 by

(K ⊗ y)i =

dK∑
j=0

yi+jKj

for i = 0, . . . , ℓ− 1− d in Z2.

• Encryption: To encrypt the bit x with randomness r and r′, compute:

EncP (x; r, r
′) = C(x) + LP (r) + Sγ(r

′)

with component-wise addition over Z2.
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1. Show that given C(x) + Sγ(r
′), the plaintext x can be recovered if γ is not too small. What

is the complexity of the attack in terms of ℓ?

The C(x) is a repetition of x and Sγ generates bits which are biased towards 0. We
can just look at the majority of C(x) + Sγ(r

′) which is most likely to be equal to x.
The complexity is O(ℓ). There is however a probability of giving an incorrect result
which is bounded by

p =
ℓ∑

i= ℓ
2

(
ℓ

i

)(
1

2
(1 + γ)

)i(1

2
(1− γ)

)ℓ−i

2. Show that given C(x) + LP (r), the plaintext x can be recovered. What is the complexity of
the attack in terms of d?

Since K(1) = w mod 2 = 1 and is a multiple of P (1) we must have an odd number
of nonzero terms in P (z). It is easy to check if C(x) + LP (r) satisfies the linear
relation defined by P (z) or its opposite by just looking at the first d terms. The
complexity is O(d).
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3. Show that for any x ∈ Z2 we have K ⊗ C(x) = (x, x, . . . , x).

From the definition of K ⊗ y we can see that (K ⊗ C(x))i = K(x) mod 2 for all i.
Since w is odd, we have K(x) mod 2 = x so K ⊗ C(x) = (x, x, . . . , x).

4. Show that for any r ∈ Zd
2 we have K ⊗ LP (r) = 0.

Let y = LP (r). Since K(z) is a multiple of p(z), let us write K(z) = P (z)Q(z). We
have Ks =

∑
i+j=s PiQj so

(K ⊗ y)t =
∑
i,j

yt+i+jPiQj =
∑
j

d∑
i=0

yt+i+jPi

Clearly, we have
∑d

i=0 yt+i+jPi = 0 for all j and t. So, K ⊗ LP (r) = 0.
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5. Show that for a random r′ all bits of K⊗Sγ(r
′) have the same distribution and a probability

of being 0 of 1
2(1 + γw).

Hint: For any i, (K ⊗ Sγ(r
′))i is the XOR of exactly w independent bits of bias γ.

For any i, (K⊗Sγ(r
′))i is the XOR of exactly w independent bits of bias γ so it has

a bias of γw. Indeed, if b is a random bit of bias γ, it means that the probability of
being 0 is 1

2(1+ γ) so γ = E((−1)b). If b1, . . . , bw are independent of bias γ we have

E((−1)b1⊕···⊕bw) = E((−1)b1+···+bw) = E((−1)b1 × · · · × (−1)bw)

Due to the independence, this is E((−1)b1) · · ·E((−1)bw) = γw.

6. Given EncP (x; r, r
′) and K(z), give an algorithm to recover x. What is its complexity in

terms of the parameters dK and ℓ?

We compute K ⊗ EncP (x; r, r
′) in time O(dKℓ). Due to the previous questions, this

must be equal to (x, x, . . . , x) + K ⊗ Sγ(r
′). Assuming that γw is not too small

and that ℓ− dK is large enough, we can recover x by computing the majority. The
complexity is O(dKℓ).
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7. To study the security, give an algorithm to recover K(z) given P (z), dK and w. What is its
complexity?
Hint: if K(z) = 1 +

∑w−1
j=1 zij , it satisfies a condition which can be written

1 +

w−1
2∑

j=1

zij =
w−1∑

j=w−1
2

+1

zij (mod P (z))

We compute a list of many 1 +
∑w−1

2
j=1 zij mod P (z) and another list of many∑w−1

j=w−1
2

+1
zij mod P (z) and look for matching. This works with complexity

O(2
w−1
2 ) which is not polynomial.

17


