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1 Modulo 101 Computation

Through all this exercise, we will let p = 101.

1. Show that p is a prime number.

p is not divisible by any prime less than
√

p: 2, 3, 5, 7.

What is the order of Z∗

p?

Since p is prime, #Z∗

p = ϕ(p) = p − 1.

2. If x =
∑2ℓ−1

i=0 di10
i with 0 ≤ di < 10 for all i, show that

x ≡
ℓ−1
∑

i=0

(−1)i(d2i + 10d2i+1) (mod 101)

Deduce an algorithm to compute x mod 101 easily.

We have x =
∑ℓ−1

i=0(d2i + 10d2i+1)100
i Since 100 ≡ −1 (mod 101) we obtain the

result. To reduce modulo 101, we simply take the decimal expansion, group digits
by pair and apply the above formula iteratively until the result is less than 100 in
absolute value. Then, if negative we add 101 and we are done.

3. Show that every element of Z∗

p has a unique 7th root and give an explicit formula to
compute it (recall that p = 101).
Application: Find the 7th root of 2 in Z∗

p.

7 is invertible modulo p − 1. Its inverse is 43 since 7 × 43 = 301 which is 1 modulo
100. So, the unique 7th root of x is x43 mod p.
We compute 243 mod 101 using the square and multiply algorithm. We have

243 ≡ 21+2·(1+22
·(1+22))

≡ 2 × 41+22
·(1+22)

≡ 2 × 4 × 541+22

≡ 2 × 4 × 54 × (−13)2

≡ 2 × 4 × 54 × 68

≡ 86

We can check that 867 ≡ 2.

4. Given g ∈ Z∗

p we let y = g10 mod p. Using 3 multiplications modulo p and 2 tests, give
an algorithm with input y to decide whether g is a generator or not (recall that p = 101).
Application: show that 2 is a generator.
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Since p − 1 = 22 × 52, g is a generator iff g
p−1

2 mod p 6= 1 and g
p−1

5 mod p 6= 1. We

have g
p−1

2 ≡ y5 and g
p−1

5 ≡ y2. So, we compute a ≡ y2, b ≡ a2, c ≡ yb and we check
that a 6≡ 1 and c 6≡ 1.
For g = 2, we compute

210 ≡ 22·(1+22)

≡ 41+22

≡ 4 × 422

≡ 4 × 162

≡ 4 × 54

≡ 14

so y = 14. We now compute a = 95, b = 36, and c = 100. Since neither a nor c is
1, 2 is a generator.

5. Under which condition is x a quadratic residue in Z∗

p?

It is equivalent to x
p−1

2 mod p = 1.

6. Show that 5 is a quadratic residue in Z∗

p.

We have

550 ≡ 52·(1+23
×(1+2))

≡ 251+23
×(1+2)

≡ 25 × 2523
×(1+2)

≡ 25 × 1922
×(1+2)

≡ 25 × 582×(1+2)

≡ 25 × 311+2

≡ 25 × 31 × 312

≡ 25 × 31 × 52

≡ 1

so 5 is a quadratic residue.

7. Show that 10 is a 4th root of 1 in Z∗

p.

We have 102 = 100 ≡ −1 so 104 ≡ 1.

8. Show that for all y ∈ Z∗

p we have that y
p−1

4 is 10k for some k ∈ {0, 1, 2, 3}.
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Since Zp is a field, there are no more than 4 4th roots of 1 and these are all powers

of 10: 1, 10, 100, and 91. Since
(

y
p−1

4

)4
≡ yp−1 ≡ 1 in Z∗

p, then y
p−1

4 must be one

of these 4th roots of 1.

9. Show that y
p+3

4 can be written y × 10k.

We have y
p+3

4 = y × y
p−1

4 = y × 10k.

10. Deduce that if x is a quadratic residue then either x
p+3

8 or 10x
p+3

8 is a square root of x.
Provide an algorithm to extract square roots in Z∗

p.

If x ≡ y2 then x
p+3

8 ≡ y
p+3

4 ≡ y × 10k so its square is x × (−1)k. If k is even then
this is a square root of x. If not, we multiply it by 10 and the power of 10 becomes
even.
To compute square roots of quadratic residues, we just raise to the power p+3

8 = 13
and we multiply by if it is not a square root.

11. Find a square root of 5.

We have

513 ≡ 51+22
×(1+2)

≡ 5 × 522
×(1+2)

≡ 5 × 252×(1+2)

≡ 5 × 191+2

≡ 5 × 19 × 192

≡ 5 × 19 × 58

≡ 56

which is a square root of 5.
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2 Guess my Age

I am human. My age is a prime number. Last year, it was multiple of 5. Next year, it will be
multiple of 7. How old am I?
Provide a detailed proof of the result.

5 and 7 are coprime. The age is 1 modulo 5 and −1 modulo 7 Applying the Chinese
remainder theorem, the age is 7× (7−1 mod 5)− 5× (5−1 mod 7) modulo 35. Since
7−1 mod 5 = 3 and 5−1 mod 7 = 3 this is 6 modulo 35. Since the age is positive, it
can only be 6 + 35i for i ≥ 0 integer. To be prime, it must be odd to i must be odd
as well. The age is thus 41 + 70j for j ≥ 0. Since 111 is not prime and 181 is too
old to be human, the age can only be 41.
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3 Authentication, Encryption and the OFB Mode of Operation

In many situations, an encryption scheme does provide confidentiality without authentication.
In this exercise, we will look at some constructions and see whether they satisfy the above
properties.

1. Recall what are the notions of confidentiality and authenticity.

Let m be a message exchanged between two parties through a communication chan-
nel:

• Confidentiality: adversary cannot get any information on m.

• Authenticity: adversary cannot modify m.

2. Recall the definition of the Vernam cipher (also known as the one-time pad).

Let K be a secret key and P the plaintext:

• Encryption: C = K ⊕ P

• Decryption: P = K ⊕ C

3. Although the Vernam cipher is perfectly secure, there are functions f such that the en-
cryption C of P can be transformed to another ciphertext C ′ 6= C that correctly decrypts
to a message P ′ = f(P ) even when P is not known.
Show an example for f and this type of attack. Deduce that the Vernam cipher does not
provide authentication.

Given the funtion f(P ) = P̄ , C ′ = f(C) = C̄ will decrypt to P̄ .
In general, flipping any bit of C will have the same effect on the corresponding
plaintext.

Now, we consider the OFB mode of operation for a block cipher depicted in Fig. 1. The
encryption under the key K is denoted EK . Let P = P1‖ . . . ‖Pn denote the plaintext and
let C = C1‖ . . . ‖Cn denote the ciphertext.

⊕

P1

C1

⊕ ⊕

Cn

PnP2

C2

IV

EK EK EK

Figure 1: OFB mode

4. Give the name of two block ciphers. What is their block and key sizes?
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DES: 64 bits, 56 bits.
AES: 128 bits, 128 bits.

5. Draw a picture for the decryption in OFB mode.

See Fig. 2

⊕

C1

P1

⊕ ⊕

Pn

CnC2

P2

IV

EK EK EK

Figure 2: Decryption in OFB mode

6. Does the message manipulation attack on the Vernam cipher above still apply?
Explain your answer.

Yes. This applies against any stream cipher.

7. Show how to perform a known plaintext attack in order to decrypt transmitted messages
when the IV is secret but fixed.

See that:
Ci = Pi ⊕ E

(i)
K (IV)

for a known pair (P = P1‖ . . . ‖Pn, C = C1‖ . . . ‖Cn).

The attack consists of computing EK(IV), . . . , E
(n)
K (IV) and using it to decrypt any

message smaller than P (these do not depend on the message).
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