
Cryptography and Security — Final Exam

Serge Vaudenay

12.1.2011

– duration: 3h
– no documents is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– answers to every exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

Family Name: .

Given Name: .

Section: .

SCIPER: .

1 3-Collisions

Let f be a random-looking function from a set X to a set Y . Let N denote the cardinality of Y . We
call an r-collision a set {x1, . . . ,xr} of r elements of X such that f (xi) = f (x j) for every i and j.

Q.1 Recall what preimage resistance and collision resistance mean.

Q.2 Name the ideas behind two collision finding algorithms from the course and give their time and
memory complexity.

Q.3 Let y ∈ Y be a target value. Provide an algorithm A1 such that upon input y it returns x ∈ X such
that f (x) = y with average complexity N in terms of f evaluations.
Make the complexity analysis.

Q.4 By using A1 as a subroutine, provide an algorithm A2 producing r-collisions with complexity rN
in terms of f evaluations.
Make the complexity analysis.

Q.5 We consider an algorithm A3 for making r-collisions, defined by two parameters α and β. The al-
gorithm works in two phases. In the first phase, it picks Nα random x ∈ X and stores (f (x),L f (x))
in a hash table, where L f (x) is a list initialized to the single element x. In the second phase, it
iteratively picks Nβ random x ∈ X . For each of these x’s, it looks whether y = f (x) has an en-
try in the hash table. If it does, and if x is not already in the list Ly, x is inserted into the list
Ly. If Ly has r elements, the algorithm output Ly. We assume that A3 never picks the same x
twice.

1: for i = 1 to Nα do
2: pick a new x at random
3: set y = f (x) and store (y,(x)) at place h(y)
4: end for
5: for i = 1 to Nβ do
6: pick a new x at random
7: if there is an entry (y,Ly) at place h(f (x)) such that y = f (x) then
8: insert x in list Ly

9: if Ly has size r then
10: yield Ly and stop
11: end if
12: end if
13: end for
14: algorithm failed

Q.5a Show that A3 either generates r-collisions or fails.

Q.5b Show that the memory complexity is M = O(Nαr logN) and that the time complexity in terms
of f evaluations is T = Nα +Nβ.

In what follows we will approximate T ≈ max(Nα,Nβ) and M ≈ Nα.

Q.5c For r = 2, which inequality shall α and β satisfy to reach a constant probability of success?
For r = 3, show that this inequality becomes α+2β ≥ 2.
Hint: apply the birthday paradox in Phase 2.

Q.5d Show that for parameters for r = 3 reaching a constant probability of success, logT is a func-
tion in terms of logM.
Plot its curve.

Q.6 We consider another algorithm A4 for making 3-collisions, defined by parameters α and β. Now,
A4 runs Nα times a collision-finding algorithm and stores the Nα obtained collisions in the same
form (y,Ly) with Ly = (x1,x2) as before. In a second phase, A4 picks Nβ random x and check if
f (x) hits one of the y in the hash table. If it is the case, a 3-collision is found. (We assume that no
x is picked several times.)

1: for i = 1 to Nα do
2: run a collision-finding algorithm and get x1 and x2
3: set y = f (x1) and store (y,(x1,x2)) at place h(y)
4: end for
5: for i = 1 to Nβ do
6: pick a new x at random
7: if there is an entry (y,Ly) at place h(f (x)) such that y = f (x) then
8: insert x in list Ly

9: yield Ly and stop
10: end if
11: end for
12: algorithm failed

Q.6a Show that the memory complexity is M ≈ Nα and that the time complexity in terms of f
evaluations is T ≈ max(Nα+ 1

2 ,Nβ).

Q.6b Show that for α+β ≥ 1 we obtain a constant probability of success.
Plot the curve of minimal logT in terms of logM to reach a constant probability of success.
Compare with A3.
When is it better?

2 Attack on some Implementations of PKCS#1v1.5 Signature with e = 3

Family Name: .

Given Name: .

Section: .

SCIPER: .

In this exercise we represent bitstrings in hexadecimal by grouping bits into packets of 4, each packet
(nibble) being denoted in hexadecimal with a figure between 0 and F. For instance, 2B represents the
bitstring 00101011. Given a bitstring x, we denote by x the integer such that x is a binary expansion
of x. For instance, 00FF= 255.

We call a cube an integer whose cubic root is an integer.
Given a message m and an integer `N , we define the bitstring of length `N

format`N (m) = 0001FF · · ·FF00‖D(m)

where D(m) represents the identifier of the hash function H together with H(m) following the ASN.1
syntax. As an example, in the SHA-1 case, we have

D(m) = 3021300906052B0E03021A05000414‖SHA-1(m)

We denote by `D the bitlength of D(m).
We recall that the PKCS#1v1.5 signature for a message m and a public key (e,N) is an integer s

such that 0 ≤ s < N and se mod N can be parsed following the format format`N (m), where `N is the
minimal bitlength of N. It is required that the padding field consisting of FF bytes is at least of 8 bytes.

Throughout this exercise we assume that e = 3.

Q.1 What is a signature scheme? Describe its components, its functionality, and give an intuition on
its security.

Q.2 What is a valid signature for a message m in PKCS#1v1.5? Detail the verification algorithm.

Q.3 Let u = format`N (m).
Q.3a If u is a cube, show that we can easily forge a signature for m without any secret information.

Q.3b We assume that u looks like a random number less than a = 2`N−15. How many cubes are less
than a?
What is the probability for u to be a cube?

Q.3c Deduce an algorithm to forge a signature for m which works with a success probability
2−

2
3 `N+10.

It this practical?

Q.4 Bleichenbacher observed that some parsers just scan the bytes from the formatting rule but do
not check that the string terminates after the digest. That is, these implementations accept the
following format

0001FF · · ·FF00‖D(m)‖g

where g is any garbage string, provided that the padding field has at least 8 bytes and that the total
length (including the garbage) is `N .
In this question we assume `N = 3`. We further assume that `N ≥ 84+6`D.

Q.4a Let P = FF · · ·FF be a string of FF bytes with bitlength `P. Show that the `N-bit string u =
0001‖P‖00‖D(m)‖00 · · ·00 is such that u = 23α−x2γ for some integer x, where α = `−5 and
γ = `N −24− `D − `P.

Q.4b By using the assumption `N ≥ 84+ 6`D, show that we can select `P such that γ ≥ 2α and
x ≤ 2

1
2 (3α−γ).

Q.4c We assume that x mod 3 = 0. Let y = 1
3 x2γ−2α and s = 2α − y. Show that u ≤ s3 < u+2γ.

Q.4d Deduce an algorithm to forge signatures on a random message m with success probability 1
3

based on Bleichenbacher’s observation when 3 divides `N and `N ≥ 84+6`D.

Q.4e Finally, apply the attack to `N = 3072 with SHA-1. Show that the attack applies and that

s = 21019 − 1
3
(2288 −D(m))234

is a valid signature with probability 1
3 over the random selection of the message.

