Cryptography and Security — Final Exam

Serge Vaudenay

12.1.2011

- duration: 3h
- no documents is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- answers to every exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

Given Name:
Section:
SCIPER:

1 3-Collisions

Let f be a random-looking function from a set X to a set Y . Let N denote the cardinality of Y . We call an r -collision a set $\{x_1, \ldots, x_r\}$ of r elements of X such that $f(x_i) = f(x_j)$ for every i and j .						
.1 Rec	call what preima	age resistance a	and collision re	esistance mean.		
	ne the ideas be mory complexit		ion finding al	gorithms from	the course and	give their time a
		<u> </u>				

Make the complexity a		

Aake the com	In terms of f evaluations. Make the complexity analysis.					

Q.5 We consider an algorithm \mathcal{A}_3 for making r-collisions, defined by two parameters α and β . The algorithm works in two phases. In the first phase, it picks N^{α} random $x \in \mathcal{X}$ and stores $(f(x), L_{f(x)})$ in a hash table, where $L_{f(x)}$ is a list initialized to the single element x. In the second phase, it iteratively picks N^{β} random $x \in \mathcal{X}$. For each of these x's, it looks whether y = f(x) has an entry in the hash table. If it does, and if x is not already in the list L_y , x is inserted into the list L_y . If L_y has r elements, the algorithm output L_y . We assume that \mathcal{A}_3 never picks the same x twice.

```
1: for i = 1 to N^{\alpha} do
       pick a new x at random
2:
       set y = f(x) and store (y, (x)) at place h(y)
4: end for
5: for i = 1 to N^{\beta} do
       pick a new x at random
6:
       if there is an entry (y, L_y) at place h(f(x)) such that y = f(x) then
7:
         insert x in list L_v
8:
9:
         if L_y has size r then
            yield L_{y} and stop
10:
         end if
11:
      end if
12:
13: end for
14: algorithm failed
```

Q.5a Show that \mathcal{A}_3 either generates *r*-collisions or fails.

Q.5b Show that the memory complexity is $M = O(N^{\alpha} r \log N)$ and that the time complexity in term of f evaluations is $T = N^{\alpha} + N^{\beta}$.

In what follows we will approximate $T \approx \max(N^{\alpha}, N^{\beta})$ and $M \approx N^{\alpha}$.

Hint: app	oly the birthday p	that this inequality becomes $\alpha + 2\beta \ge 2$. The third paradox in Phase 2.				

Q.5d	Show that for parameters for $r = 3$ reaching a constant probability of success, $\log T$ is a function in terms of $\log M$.
	Plot its curve.

\mathcal{A}_4 for $f(x)$	consider another algorithm \mathcal{A}_4 for making 3-collisions, defined by parameters α and β . Now, runs N^{α} times a collision-finding algorithm and stores the N^{α} obtained collisions in the same in (y, L_y) with $L_y = (x_1, x_2)$ as before. In a second phase, \mathcal{A}_4 picks N^{β} random x and check if x hits one of the y in the hash table. If it is the case, a 3-collision is found. (We assume that no picked several times.)
	for $i = 1$ to N^{α} do
2:	run a collision-finding algorithm and get x_1 and x_2
3:	set $y = f(x_1)$ and store $(y, (x_1, x_2))$ at place $h(y)$ end for
	for $i = 1$ to N^{β} do
6:	pick a new x at random
7:	
8:	insert x in list L_y
9:	yield L_y and stop
10:	end if
	end for
	algorithm failed
Q.6a	Show that the memory complexity is $M \approx N^{\alpha}$ and that the time complexity in terms of f evaluations is $T \approx \max(N^{\alpha + \frac{1}{2}}, N^{\beta})$.

Show that for $\alpha + \beta \ge 1$ we obtain a constant probability of success. Plot the curve of minimal $\log T$ in terms of $\log M$ to reach a constant probability of success Compare with \mathcal{A}_3 . When is it better?

2 Attack on some Implementations of PKCS#1v1.5 Signature with e = 3

	Family Name:
	Given Name:
	Section:
	SCIPER:
In this exercise we represent bitstrings in hexadecimal (nibble) being denoted in hexadecimal with a figure bitstring 0010 1011. Given a bitstring x , we denote of \bar{x} . For instance, $\overline{00\text{FF}} = 255$. We call a <i>cube</i> an integer whose cubic root is an Given a message m and an integer ℓ_N , we define	be between 0 and F. For instance, 2B represents the by \bar{x} the integer such that x is a binary expansion integer.
$format_{\ell_N}(m) = 0001$	$LFF\cdotsFF00\ D(m)$
where $D(m)$ represents the identifier of the hash fur syntax. As an example, in the SHA-1 case, we have	` , ,
D(m) = 3021300906052B0E0	03021A05000414 SHA-1(<i>m</i>)
We denote by ℓ_D the bitlength of $D(m)$. We recall that the PKCS#1v1.5 signature for a such that $0 \le s < N$ and $s^e \mod N$ can be parsed for minimal bitlength of N . It is required that the padding Throughout this exercise we assume that $e = 3$.	ng field consisting of FF bytes is at least of 8 bytes.
Q.1 What is a signature scheme? Describe its com	ponents, its functionality, and give an intuition on

vv nat 15 a vc	alid signature for a	message m m r K		i die verification	argoriumi
T -4 C					
Let $u = \text{form}$	cube, (m). $cube, show that we$	s ann angily form	o signoturo for m	without any soor	est informe
. 3a 11 <i>u</i> 18 a	snow that we		a signature for m	without any seci	et illioilla

Q.3b	We assume that \overline{u} looks like a random number less than $a = 2^{\ell_N - 15}$. How many cubes are less than a ? What is the probability for \overline{u} to be a cube?
	- That is the probability for a to be a case.
Q.3c	Deduce an algorithm to forge a signature for m which works with a success probability $2^{-\frac{2}{3}\ell_N+10}$.
	It this practical?

Q.4	Bleichenbacher observed that some parsers just scan the bytes from the formatting rule but do not check that the string terminates after the digest. That is, these implementations accept the
	following format
	$0001FF\cdotsFF00\ D(m)\ g$
(where g is any garbage string, provided that the padding field has at least 8 bytes and that the total length (including the garbage) is ℓ_N . In this question we assume $\ell_N = 3\ell$. We further assume that $\ell_N \ge 84 + 6\ell_D$. 2.4a Let $P = \text{FF} \cdots \text{FF}$ be a string of FF bytes with bitlength ℓ_P . Show that the ℓ_N -bit string $u = 0.001 \ P\ 00\ D(m)\ 00\cdots00$ is such that $\overline{u} = 2^{3\alpha} - x2^{\gamma}$ for some integer x , where $\alpha = \ell - 5$ and $\gamma = \ell_N - 24 - \ell_D - \ell_B$.
	$\gamma = \ell_N - 24 - \ell_D - \ell_P.$

Q.4c We	assume that x mo	d 3 = 0. Let $y = \frac{1}{3}x$	$c2^{\gamma-2\alpha}$ and $s=2^{\alpha}$	$\overline{u} - y$. Show that $\overline{u} \le \overline{u}$	$\leq s^3 < \overline{u} + 2^{\gamma}$.

Q.4d	Deduce an algorithm to forge signatures on a random message m with success probability $\frac{1}{3}$ based on Bleichenbacher's observation when 3 divides ℓ_N and $\ell_N \ge 84 + 6\ell_D$.

$s = 2^{1019} - \frac{1}{3}(2^{288} - \overline{D(m)})2^{34}$
is a valid signature with probability $\frac{1}{3}$ over the random selection of the message.

Q.4e Finally, apply the attack to $\ell_N=3\,072$ with SHA-1. Show that the attack applies and that