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1 Birthday Computation

In 2010, January 1st was a Friday. My birthday last Spring was a Monday. If every months
had 30 days, it would have been the 5th day of a month. When was it?

Assign 0 to Friday, 1 to Saturday, 2 to Sunday, 3 to Monday and so on. Also number
every day of the year starting with 0 for January 1st. Let x be the number of my
birthday. Since it was a Monday, we have x mod 7 = 3. Since it was the 5th of a
month in a calendar with 30 days per month, we have x mod 30 = 4. We observe that
7 and 30 are coprime. Thanks to the Chinese Remainder Theorem, we can compute
x mod 210. We obtain

x ≡ 3 · 30 · (30−1 mod 7) + 4 · 7 · (7−1 mod 30) (mod 210)

Since 30 mod 7 = 2 and 2× 4 mod 7 = 1, we have 30−1 mod 7 = 4. Similarly, since
13× 7 = 91 and 91 mod 30 = 1 we have 7−1 mod 30 = 13. Now, we compute

x ≡ 3 · 30 · 4 + 4 · 7 · 13 (mod 210)

so x = 724 mod 210 = 94. Since there are 365 days in a year, we have 0 ≤ x < 365
and x mod 210 = 94, we have x = 94 or x = 304. That is, the birthday can either
be the 95th or 305th day of the year, which is either April 5th or October 31st. We
know that it was in Spring, so it is April 5th.



2 The Group Z∗
77

Q.1 Compute ϕ(77).

Since 77 = 7× 11 is the complete factorization of 77, we have ϕ(77) = 6× 10 = 60.

Q.2 What is the order of 2 in Z∗
77?

Hint: invoke Lagrange and try 2
ϕ(77)

p mod 77 for all prime factors p of ϕ(77).

Due to the Lagrange Theorem, the order of 2 must be a factor of 60, the order of
the group. We have 60 = 22 × 3× 5 so we can try all factors of 60. There are 24 in
total. The order n is such that 2n mod 77 = 1. For all k such that nk divides 60, we
also have 2nk mod 77 = 1.
We have 22

2×3 mod 77 = 4 096 mod 77 = 15 so there is no k such that nk = 22 × 3.
Since n divides 22 × 3× 5, this means that 5 divides n.
We have 22

2×5 mod 77 = 67 so, by the same argument, 3 must divide n.
We deduce that n is of form 2α × 3× 5 with α ∈ {0, 1, 2}. We have 23×5 mod 77 =
32 768 mod 77 = 43 so α > 0.
We have 22×3×5 mod 77 = 1.
So, the order is 30.

Q.3 Is 36 mod 7 a power of 2 in Z∗
7?

If yes, give the power.

We have 36 mod 7 = 1 = 20 mod 7. So, it is a power of 2.

Q.4 Is 36 mod 11 a power of 2 in Z∗
11?

If yes, give the power.

We have 36 mod 11 = 3 = 28 mod 11. So, it is a power of 2.

Q.5 Is 36 a power of 2 in Z∗
77?

If yes, give the power.

Let us try a power equal to 0 modulo 7− 1 and to 8 modulo 11− 1. Let e mod 6 = 0
and e mod 10 = 8 be an equation. Note that 6 and 10 are not coprime, so we cannot
invoke the Chinese remainder theorem. However e = 18 is clearly a solution. Now,
if we compute 2e mod 77, we obtain that it is congruent to 36 modulo 7 and modulo
11. Then, due to the Chinese remainder theorem, we have that 218 mod 77 = 36.

Q.6 Is there any generator in Z∗
77? If yes, give one.

Hint: use a Chinese argument.

We have Z77 ≈ Z7 × Z11 so Z∗
77 ≈ Z∗

7 × Z∗
11. Since Z∗

7 ≈ Z6 and Z∗
11 ≈ Z10, we

have Z∗
77 ≈ Z6 ×Z10 which is not cyclic. Indeed, for any (a, b) ∈ Z6 × Z10, we have

30(a, b) = (0, 0) so there is no element of order 60. Therefore, there is no generator.



3 Vernam playing Dices

We play with 6-face dices. For simplicity, we assume that the faces of a dice are numbers from
0 to 5. Assume that Alice and Bob exchange a sequence k1, k2, . . . , kn of independent trials
with a dice.

Q.1 Given a cipher where X denotes the plaintext, Y denotes the ciphertext, and K denotes
the key, recall the definition of perfect secrecy.

Perfect secrecy means that X and Y are independent variables. An equivalent defi-
nition is that for all x and y, we have Pr[X = x|Y = y] = Pr[X = x].

Q.2 To encrypt a number X between 0 and 5, they take the next unused ki number and
compute Y = X + ki mod 6.
Assuming that dices are unbiased, show that this cipher provides perfect secrecy.

Take the Abelian group G = Z6. The cipher is equivalent to the generalized version
of the Vernam cipher over the Abelian group G. For any x and Y , we have

Pr[X = x, Y = y] = Pr[X = x, ki = y − x mod 6] = Pr[X = x] Pr[ki = y − x mod 6]

so Pr[X = x, Y = y] = 1
6 Pr[X = x]. Furthermore,

Pr[Y = y] =
∑
x

1

6
Pr[X = x] =

1

6

Thus, Pr[X = x, Y = y] = Pr[X = x] Pr[Y = y] for all x and y. That is, X and Y
are independent. So, the cipher provides perfect secrecy.

Q.3 An adversary is an algorithm A taking the ciphertext Y as input and producing a result
A(Y ). We say that the adversary wins if A(Y ) = X.
Propose an adversary with winning probability 1

6 .

Let A(y) pick a random value in {0, 1, 2, 3, 4, 5} with uniform distribution. Clearly,
A(Y ) and X are independent. Since one is uniform, they match with probability is
1
6 . This is the winning probability.

Q.4 We use the same encryption scheme but with a biased dice to draw the ki’s. That is, there
is a vector p such that for all i and k, we have Pr[ki = k] = pk where pk is not necessarily
1
6 .
Assuming that X is uniformly distributed, provide an adversary with optimal winning
probability. What is this probability?

The best approach is to output the most likely value x for X = x given the value y
of Y = y. That is,

A(y) = argmax
x

Pr[X = x|Y = y]

We have Pr[X = x|Y = y] = Pr[X=x] Pr[K=y−x]
Pr[Y=y] . If X is uniformly distributed, this

is of form f(y) Pr[K = y − x]. So, A(y) = y − k where k = argmaxk pk. That is, A
hopes that the key is K = k where k is the most likely key and outputs x = y − k.
The winning probability is Pr[K = k] = maxk pk = 2−Hmin(K) where Hmin(K) is
called the min-entropy of K. That is, Pr[A wins] = maxk Pr[K = k].



Q.5 Assuming that X is not uniformly distributed but that its distribution is known, show
that the following adversary has optimal winning probability.

A(y) = argmax
x

Pr[X = x] Pr[K = y − x]∑
x′ Pr[X = x′] Pr[K = y − x′]

(Recall that argmaxx f(x) denotes the x such that f(x) is maximal. By convention, if
there are several we take one of these arbitrarily.)
Hint: given y, consider maximizing Pr[X = x|Y = y] over x.

Clearly, the optimal strategy consists of giving one x such that the probability that
X = x given the available information Y = y is maximal. Hence, we can consider

A(y) = argmax
x

Pr[X = x|Y = y]

Now,

A(y) = argmax
x

Pr[X = x|Y = y] = argmax
x

Pr[X = x] Pr[K = y − x]∑
x′ Pr[X = x′] Pr[K = y − x′]

which is what we wanted to prove.

Show that its winning probability is

p =
∑
y

max
x

Pr[X = x] Pr[K = y − x]

The winning probability is

p = Pr[A(Y ) = X] =
∑
y

Pr[Y = y] Pr[A(y) = X|Y = y]

We know that the probability that A(y) = X given that Y = y is precisely the
maximum over x of Pr[X = x|Y = y]. Thus,

p =
∑
y

Pr[Y = y]max
x

Pr[X = x] Pr[K = y − x]

Pr[Y = y]
=

∑
y

max
x

Pr[X = x] Pr[K = y−x]

Show that this holds for the generalized Vernam cipher over any group G.
Hint: did we use G = Z6 so far?

Clearly, our above proofs do not depend on the choice G = Z6.

Q.6 As an example, we assume that Pr[K = 0] = 1
6(1 − ε), Pr[K = 5] = 1

6(1 + ε), and
Pr[K = a] = 1

6 for a = 1, 2, 3, 4. We also assume that X ∈ {0, 1, 2, 3, 4} with uniform
distribution in this set. (Note that X is not uniformly distributed in G.)
Give the y 7→ A(y) table of the optimal A and its winning probability.
Hint: apply the results of Q.5.



We have

A(y) = argmax
x

Pr[X = x] Pr[K = y − x]∑
x′ Pr[X = x′] Pr[K = y − x′]

= arg max
0≤x<5

1
5 Pr[K = y − x]∑4

x′=0
1
5 Pr[K = y − x′]

which is y − 5 mod 6 if y 6= 4 or any x ∈ {0, 1, 2, 3} if y = 4.

y 0 1 2 3 4 5

A(y) 1 2 3 4 {0, 1, 2, 3} 0

The winning probability is

p =
∑
y

max
x

Pr[X = x] Pr[K = y − x]

=
∑
y 6=4

max
0≤x<5

1

5
Pr[K = y − x] + max

0≤x<5

1

5
Pr[K = 4− x]

=
1

6
(1 + ε) +

1

5
× 1

6

Q.7 We now assume that dices are unbiased and that X is distributed in {0, 1, 2} with Pr[X =
1] = 1

2 and Pr[X = 0] = Pr[X = 2] = 1
4 . We assume that we encrypt two independent

plaintexts X and X ′ with this distribution, by using the same key K. We denote by
Y ′ = X ′ +K the ciphertext corresponding to X ′.

Given Y and Y ′, give an optimal strategy to output x and x′.

Hint: use Q.5 over Ḡ = Z2
6 with X̄ = (X,X ′) and some weird distribution for a key K̄.



We consider Ḡ = Z2
6 where we encrypt X̄ = (X,X ′) with a key of form K̄ = (K,K)

with K uniformly distributed over G. We apply Q.5, an optimal strategy is defined
by

A(ȳ) = argmax
x̄

Pr[X̄ = x̄] Pr[K̄ = ȳ − x̄]∑
x̄′ Pr[X̄ = x̄′] Pr[K̄ = ȳ − x̄′]

Event K̄ = ȳ− x̄ has nonzero probability if and only if (ȳ− x̄)1 = (ȳ− x̄)2. That is,
x̄2− x̄1 = ȳ2− ȳ1. We can restrict the sum over all x̄′ of this form as well. Then the
probability over the distribution of K is always 1

6 and the ratio simplifies into

A(ȳ) = argmax
x̄1

Pr[X̄ = x̄]∑
x̄′
1
Pr[X̄ = x̄′]

where x̄2 and x̄′2 are computed from the above equations. Now, X̄ = x̄ is equivalent
to X = x̄1 = x and X ′ = x̄1 + ȳ2 − ȳ1 = x+ y′ − y. So,

A(y, y′) = argmax
x

Pr[X = x,X ′ = x+ y − y′]

Pr[X ′ −X = y′ − y]

That is,
A(y, y′) = argmax

x
Pr[X = x|X ′ −X = y′ − y]

We can then easily compute

y′ − y −2 −1 0 1 2

A(y, y′) (2, 0) (1, 0) (1, 1) (0, 1) (0, 2)

Other values for y′ − y are impossible.

What is its winning probability?

With the same type of computation, the winning probability is

p =
∑
ȳ

max
x̄

Pr[X̄ = x̄] Pr[K̄ = ȳ − x̄] =
∑
y,y′

max
x

1

6
Pr[X = x,X ′ = x+ y′ − y]

That is,

p =
2∑

δ=−2

max
x

Pr[X = x,X ′ = x+ δ]

So p = 1·1
42

+ 1·2
42

+ 2·2
42

+ 2·1
42

+ 1·1
42

which leads us to p = 5
8 .


