
Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

24.11.2011

– duration: 1h45
– no documents is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– exam proctors will not answer any technical question during the exam
– answers to every exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

1 A Weird Mode of Operation

In this exercise, we assume that we have a block cipher C and we use it in the following mode
of operation: to encrypt a sequence of blocks x1, . . . , xn, we initialize a counter t to some IV
value, then we compute

yi = ti ⊕ CK(xi)

for every i where K is the encryption key and ti = IV + i. The ciphertext is

IV, y1, . . . , yn

Namely, IV is sent in clear.

Q.1 Is this mode of operation equivalent to something that you already know? Say why?

It is equivalent to the ECB mode. Namely, a passive adversary can compute ti and
then yi ⊕ ti for every i. This gives the ECB encryption of x1, . . . , xn.

Q.2 Does the IV need to be unique?

No.

Q.3 What kind of security problem does this mode of operation suffer from?

Like the ECB mode, if the entropy of a block xi is low, then yi ⊕ ti repeats. For
instance, xi = xj is equivalent to yi ⊕ ti = yj ⊕ tj which can be observed with values
which are sent over the insecure channel.

2 RSA Modulo 1 000 001

Given a1, a2, . . . , an ∈ {0, 1, . . . , 9}, we denote by a1a2 · · · an the decimal number equal to
10(10(· · · 10a1 + a2 · · ·) + an−1) + an.

Q.1 Consider a decimal number abc def . Show that

abc def ≡ ab− cd+ ef (mod 101)

As an application, compute 336 634 mod 101 and 663 368 mod 101.

We have

abc def = 10(10(10(10(10a+ b) + c) + d) + e) + f

= 1002(10a+ b) + 100(10c+ d) + (10e+ f)

Since 100 ≡ −1 (mod 101), this writes

abc def ≡ (10a+ b)− (10c+ d) + (10e+ f) (mod 101)

which is what we had to prove. So,

336 634 ≡ 33− 66 + 34 = 1 (mod 101)

and
663 368 ≡ 66− 33 + 68 = 101 ≡ 0 (mod 101)

which yields 336 634 mod 101 = 1 and 663 368 mod 101 = 0.

Q.2 Compute the inverse of x = 1000 modulo p = 101.

A general method consists of applying the extended Euclid algorithm. We have

x1= (1 000, 1 , 0) x2= (101, 0 , 1)
x2= (101 , 0 , 1) x3= (91 , 1 , −9) x3 = x1 − 9x2

x3= (91 , 1 , −9) x4= (10 , −1 , 10) x4 = x2 − x3

x4= (10 ,−1, 10) x5= (1 , 10 ,−99) x5 = x3 − 9x4

x5= (1 ,10 ,−99) x6= (0 ,−101,1 000) x6 = x4 − 10x5

so 1 = 1 000× 10− 101× 99. Therefore, x−1 mod p = 10.

Q.3 Consider a decimal number abc def . Show that

abc def ≡ ab00− ab+ cdef (mod 9901)

As an application, compute 336 634 mod 9 901 and 663 368 mod 9 901.

Just like before, we have

abc def = 10(10(10(10(10a+ b) + c) + d) + e) + f

= 104(10a+ b) + cdef

Since 104 ≡ 100− 1 (mod 9 901), this writes

abc def ≡ 100(10a+ b)− (10a+ b) + cdef (mod 101)

which is what we had to prove. So,

336 634 ≡ 3300− 33 + 6634 = 9 901 ≡ 0 (mod 9 901)

and
663 368 ≡ 6600− 66 + 3368 = 9902 ≡ 1 (mod 9 901)

which yields 336 634 mod 101 = 0 and 663 368 mod 101 = 1.

Q.4 Compute x199 mod q for x = 1000 and q = 9901.

Then, x199 ≡ x3 × (x4)49 (mod q). We have

x2 = 10002 = 1000 000 ≡ 10000− 100 + 0000 = 9900 ≡ −1 (mod q)

so x4 mod q = 1 and x3 mod q = −x mod q = 8901. Thus, b = 8901.
Applying the square-and-multiply algorithm would have led to x4 mod q = 1 as well.

Q.5 Given a and b, show that x = 336 634a + 663 368b is such that x mod 101 = a and
x mod 9 901 = b.

We have 336 634 mod 101 = 1 and 663 368 mod 101 = 0 so, by linearity, we have
x ≡ a (mod 101). We have 336 634 mod 9 901 = 0 and 663 368 mod 9 901 = 1
so, by linearity, we have x ≡ b (mod 9 901). This expression for x is actually the
inverse formula for the Chinese remainder theorem using moduli 101 and 9 901 (note
that they are coprime).

Q.6 Given p = 101 and q = 9901, we let N = pq. Compute φ(N) and factor it into a product
of prime numbers.

Since p and q are prime, we have

φ(N) = (p− 1)(q − 1) = 100× 9900 = 990 000 = 104 × 9× 11 = 24 × 32 × 54 × 11

Q.7 Let e be an integer. Show that e is a valid RSA exponent for modulus N if and only if
there is no prime factor of φ(N) dividing e.

e is a valid RSA exponent if and only if gcd(e, φ(N)) = 1 which is if and only if
none of the prime factors of φ(N) divide e. Since the list of prime factors of φ(N)
is {2, 3, 5, 11}, we obtain the result.

Q.8 Show that e = 199 is a valid RSA exponent for modulus N and compute the encryption
of x = 1000 for this public key.

199 has no prime factor in {2, 3, 5, 11} so it is a valid exponent. To compute xe mod
N , we use the Chinese remainder theorem. We compute a = xe mod p and b =
xe mod q.
We have a = x199 mod 101 = x199 mod 100 mod 101 = x−1 mod 101 = 10 due to Q.2.
Similarly, we have b = x199 mod 9 901 = 8 901 due to Q.4. Finally,

xe mod N = (336 634×10+663 368×8 901) mod N = 5908 004 908 mod N = 999 001

So, the encryption of x is 999 001.

3 AES Galois Field and AES Decryption

We briefly recall the AES block cipher here. It encrypts a block specified as a 4 × 4 matrix
of bytes s and using a sequence W0, . . . ,Wn of matrices which are derived from a secret key.
For convenience the row and columns indices range from 0 to 3. For instance, s1,3 means the
term of s in the second row and last column. The main AES encryption function is defined
by the following pseudocode:

AESencryption(s,W)
1: AddRoundKey(s,W0)
2: for r = 1 to n− 1 do
3: SubBytes(s)
4: ShiftRows(s)
5: MixColumns(s)
6: AddRoundKey(s,Wr)
7: end for
8: SubBytes(s)
9: ShiftRows(s)

10: AddRoundKey(s,Wn)

AddRoundKey(s,Wr) is replacing s by s⊕Wr, the component-wise XOR of matrices s and
Wr. SubBytes(s) is replacing s by a new matrix in which the term at position i, j is S(si,j),
where S is a fixed permutation of the set of all byte values. ShiftRows(s) is replacing s by
a new matrix in which the term at position i, j is si,i+j mod 4. MixColumns(s) is replacing s
by a new matrix in which the column at position j is M × s.,j , where s.,j denotes the column
at position j of s and M is a fixed matrix defined by

M =


0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02


The matrix product inherits from the algebraic structure GF(256) on the set of all byte values.
Namely, each byte represents a polynomial on variable x of degree at most 7 and coefficients in
Z2. Polynomials are added and multiplied modulo 2 and modulo P (x) = x8+x4+x3+x+1. The
correspondence between bytes and polynomial works as follows: each byte a is a sequence of 8
bits a7, . . . , a0 which is represented in hexadecimal 0xuv where u and v are two hexadecimal
digits (i.e. between 0 and f), u encodes a7a6a5a4, and v encodes a3a2a1a0 by the following
encoding rule:

0000→0 0100→4 1000→8 1100→c

0001→1 0101→5 1001→9 1101→d

0010→2 0110→6 1010→a 1110→e

0011→3 0111→7 1011→b 1111→f

Q.1 Provide a pseudocode for AESdecryption(s,W), for AES decryption.

We remark that AddRoundKey is self-inverse. We further remark that SubBytes
and ShiftRows commute.

AESdecryption(s,W)
1: AddRoundKey(s,Wn)
2: for r = n− 1 down to 1 do
3: InvSubBytes(s)
4: InvShiftRows(s)
5: AddRoundKey(s,Wr)
6: InvMixColumns(s)
7: end for
8: InvSubBytes(s)
9: InvShiftRows(s)

10: AddRoundKey(s,W0)
InvSubBytes(s) is replacing s by a new matrix in which the term at position i, j
is S−1(si,j). InvShiftRows(s) is replacing s by a new matrix in which the term at
position i, j is si,−i+j mod 4. InvMixColumns(s) is replacing s by a new matrix in
which the column at position j is M−1 × s.,j.

Q.2 Which polynomial does 0x2b represent?

2 encodes 0010 and b encodes 1011, so 0x2b encodes the bitstring 0010 1011 which
represents x5 + x3 + x+ 1.

Q.3 Compute 0x53+ 0xb8.

Addition is a simple XOR. 0x53 encodes 0101 0011 and 0xb8 encodes 1011 1000.
The XOR is 1110 1011 which is encoded by 0xeb. So, 0x53+ 0xb8 = 0xeb.

Q.4 Compute 0x21× 0x25.

0x21 represents the polynomial x5 + 1. 0x25 represents the polynomial x5 + x2 + 1.
We have

(x5 + 1)× (x5 + x2 + 1) = x10 + x7 + 2x5 + x2 + 1 ≡ x10 + x7 + x2 + 1

Since x8 ≡ x4+x3+x+1 we have x9 ≡ x5+x4+x2+x and x10 ≡ x6+x5+x3+x2.
So,

(x5+1)×(x5+x2+1) ≡ x10+x7+x2+1 ≡ x7+x6+x5+x3+2x2+1 ≡ x7+x6+x5+x3+1

Now, x7 + x6 + x5 + x3 + 1 is represented by 0xe9. So, 0x21× 0x25 = 0xe9.

Q.5 Compute the inverse of 0x02.
Hint: look at P (x).

Since x8+x4+x3+x+1 ≡ 0, by multiplying by x−1 we obtain x7+x3+x2+1+x−1 ≡ 0,
so x−1 = x7 + x3 + x2 + 1. Changing this into hexadecimal bytes, this gives

0x02−1 = 0x8d

Q.6 Show that M−1 is of form

M−1 =


0x0e 0x0b 0x0d 0x09

0x09 · · ·
0x0d · · ·
0x0b · · ·

 .

where all missing terms are in the set {0x09, 0x0b, 0x0d, 0x0e}.

We first compute
0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

×


0x0e

0x09

0x0d

0x0b

 = M ×


0x0e

0x09

0x0d

0x0b


By writing this with polynomials, this gives

M ×


0x0e

0x09

0x0d

0x0b

 =


x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x

×


x3 + x2 + x

x3 + 1
x3 + x2 + 1
x3 + x+ 1

 =


1
0
0
0


By rotating the columns of M and the rows of the vector in the product we obtain

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

0x02 0x03 0x01 0x01

×


0x0b

0x0e

0x09

0x0d

 =


1
0
0
0


Now, by rotating the rows of the matrix and of the result, we obtain

0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

×


0x0b

0x0e

0x09

0x0d

 = M ×


0x0b

0x0e

0x09

0x0d

 =


0
1
0
0


By redoing the same, we obtain

M ×


0x0d

0x0b

0x0e

0x09

 =


0
0
1
0


and

M ×


0x09

0x0d

0x0b

0x0e

 =


0
0
0
1


So,

M ×


0x0e 0x0b 0x0d 0x09

0x09 0x0e 0x0b 0x0d

0x0d 0x09 0x0e 0x0b

0x0b 0x0d 0x09 0x0e

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


which gives the inverse of M and proves the required properties.

