Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

24.11.2011

— duration: 1h45

— no documents is allowed

— a pocket calculator is allowed

— communication devices are not allowed

— exam proctors will not answer any technical question during the exam
— answers to every exercise must be provided on separate sheets

— readability and style of writing will be part of the grade

— do not forget to put your name on every sheet!

1 A Weird Mode of Operation

In this exercise, we assume that we have a block cipher C' and we use it in the following mode
of operation: to encrypt a sequence of blocks 1, ..., x,, we initialize a counter ¢ to some IV
value, then we compute

yi = t; © Ck (z)

for every i where K is the encryption key and t; = IV 4 i. The ciphertext is
IV?yl?"‘?yn

Namely, IV is sent in clear.

Q.1 Is this mode of operation equivalent to something that you already know? Say why?

It is equivalent to the ECB mode. Namely, a passive adversary can compute t; and
then y; @ t; for every i. This gives the ECB encryption of x1,...,Ty.

Q.2 Does the IV need to be unique?

’No.

Q.3 What kind of security problem does this mode of operation suffer from?

Like the ECB mode, if the entropy of a block x; is low, then y; @ t; repeats. For
instance, x; = x; s equivalent to y; ©t; = y; ©t; which can be observed with values
which are sent over the insecure channel.




2 RSA Modulo 1000001

Given ay,as9,...,a, € {0,1,...,9}, we denote by @jaz--a, the decimal number equal to
10(10(- - - 10a1 + ag -+ +) + an—1) + an.

Q.1 Consider a decimal number abcdef. Show that
abcdef = ab—cd+ef (mod 101)

As an application, compute 336 634 mod 101 and 663 368 mod 101.

We have

abcdef = 10(10(10(10(10a + b) + ¢) +d) +e) + f
= 1002(10a + b) 4+ 100(10¢ + d) + (10e + f)

Since 100 = —1  (mod 101), this writes
abcdef = (10a + b) — (10c + d) + (10e + f)  (mod 101)
which is what we had to prove. So,
336634 =33 -66+34=1 (mod 101)

and
663368 =66 —33+68 =101 =0 (mod 101)

which yields 336 634 mod 101 = 1 and 663 368 mod 101 = 0.

Q.2 Compute the inverse of x = 1000 modulo p = 101.

A general method consists of applying the extended Euclid algorithm. We have

x1=(1000,1, 0 ) @= (101, 0 , 1 )

wz—(lol,o, 1 ) $3:(91, 1 ) $3:£U1—9£132
:123:( 91 ,1,—9) il34:(10 ) ry — X9 — I3

xy=( 10 ,—1,10) xs= (1, ,—99) x5 = 3 — 94
5= ( 1 ,10,—99) a=( 0 ,— 1011000) xs = x4 — 1025

501 =1000 x 10 — 101 x 99. Therefore, ! mod p = 10.

Q.3 Consider a decimal number abcdef. Show that
abcdef = ab00 — ab+ cdef (mod 9901)

As an application, compute 336 634 mod 9901 and 663 368 mod 9901.



Just like before, we have

abcdef = 10(10(10(10(10a + b) +¢) +d) +€) + f
= 10*(10a + b) + cdef

Since 104 =100 — 1 (mod 9901), this writes

abcdef = 100(10a + b) — (10a + b) + cdef (mod 101)
which is what we had to prove. So,

336634 = 3300 — 33 4+ 6634 =9901 =0 (mod 9901)

and
663 368 = 6600 — 66 + 3368 = 9902 =1 (mod 9901)

which yields 336 634 mod 101 = 0 and 663 368 mod 101 = 1.

Compute z'% mod ¢ for = 1000 and ¢ = 9901.

Then, 1% = 23 x (2M)*  (mod ¢). We have
2% = 1000% = 1000000 = 10000 — 100 + 0000 = 9900 = —1 (mod )

so z* mod ¢ =1 and x> mod ¢ = —x mod ¢ = 8901. Thus, b = 8901.
Applying the square-and-multiply algorithm would have led to z* mod ¢ =1 as well.

Given a and b, show that x = 336 634a + 663 368b is such that x mod 101 = a and
x mod 9901 = b.

We have 336634 mod 101 = 1 and 663 368 mod 101 = 0 so, by linearity, we have
x = a (mod 101). We have 336 634 mod 9901 = 0 and 663 368 mod 9901 = 1
so, by linearity, we have x = b (mod 9901). This expression for x is actually the
inverse formula for the Chinese remainder theorem using moduli 101 and 9901 (note
that they are coprime).

Given p = 101 and ¢ = 9901, we let N = pq. Compute p(N) and factor it into a product
of prime numbers.

Since p and q are prime, we have

©(N) = (p—1)(g —1) = 100 x 9900 = 990000 = 10* x 9 x 11 = 2* x 32 x 5% x 11

Let e be an integer. Show that e is a valid RSA exponent for modulus N if and only if
there is no prime factor of p(N) dividing e.

e is a valid RSA exponent if and only if gcd(e, p(N)) = 1 which is if and only if
none of the prime factors of p(N) divide e. Since the list of prime factors of ¢(N)
is {2,3,5,11}, we obtain the result.




Q.8 Show that e = 199 is a valid RSA exponent for modulus N and compute the encryption
of x = 1000 for this public key.

199 has no prime factor in {2,3,5,11} so it is a valid exponent. To compute x¢ mod
N, we use the Chinese remainder theorem. We compute a = x€ mod p and b =
z€ mod q.

We have a = % mod 101 = z!99 m°d 100 154 101 = 2~ ! mod 101 = 10 due to Q.2.
Similarly, we have b = 2 mod 9901 = 8901 due to Q.4. Finally,

z° mod N = (336 634x10+663 368 x8901) mod N = 5908 004 908 mod N = 999 001

So, the encryption of x is 999 001.




3 AES Galois Field and AES Decryption

We briefly recall the AES block cipher here. It encrypts a block specified as a 4 x 4 matrix
of bytes s and using a sequence Wy, ..., W,, of matrices which are derived from a secret key.
For convenience the row and columns indices range from 0 to 3. For instance, s 3 means the
term of s in the second row and last column. The main AES encryption function is defined
by the following pseudocode:

AESencryption(s, W)
1. AddRoundKey(s, W)
2: forr=1ton—1do
3:  SubBytes(s)
4:  ShiftRows(s)
5. MixColumns(s)
6: AddRoundKey(s, W,)
7: end for
8: SubBytes(s)
9: ShiftRows(s)

10: AddRoundKey (s, W,,)

AddRoundKey(s, W,) is replacing s by s @ W, the component-wise XOR of matrices s and
W,.. SubBytes(s) is replacing s by a new matrix in which the term at position 4, j is S(s; ),
where S is a fixed permutation of the set of all byte values. ShiftRows(s) is replacing s by
a new matrix in which the term at position 4, j is $; i+j mod 4. MixColumns(s) is replacing s
by a new matrix in which the column at position j is M X s_;, where s_; denotes the column
at position j of s and M is a fixed matrix defined by

0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

The matrix product inherits from the algebraic structure GF(256) on the set of all byte values.
Namely, each byte represents a polynomial on variable x of degree at most 7 and coefficients in
Zs. Polynomials are added and multiplied modulo 2 and modulo P(z) = 284z*+23+2+1. The
correspondence between bytes and polynomial works as follows: each byte a is a sequence of 8
bits ar, ..., ag which is represented in hexadecimal Oxuv where u and v are two hexadecimal
digits (i.e. between 0 and f), u encodes aragasas, and v encodes azasaiag by the following
encoding rule:

0000—0 0100—4 1000—8 1100—c
0001—1 0101—5 1001—9 1101—d
0010—2 0110—6 1010—a 1110—e
0011—3 0111—7 1011—=b 1111-f

Q.1 Provide a pseudocode for AESdecryption(s, W), for AES decryption.



We remark that AddRoundKey is self-inverse. We further remark that SubBytes
and ShiftRows commute.
AESdecryption(s, W)
1: AddRoundKey(s, W,,)
2: forr =n—1 down to 1 do
3:  InvSubBytes(s)
4:  InvShiftRows(s)
5:  AddRoundKey(s, W;)
6:  InvMixColumns(s)
7: end for
8: InvSubBytes(s)
9: InvShiftRows(s)
10: AddRoundKey (s, Wp)
InvSubBytes(s) is replacing s by a new matriz in which the term at position i, j
is S71(s; ;). InvShiftRows(s) is replacing s by a new matriz in which the term at
Position i, j is S —itj mod 4- INnVvMixColumns(s) is replacing s by a new matriz in
which the column at position j is M~' x 5.

Q.2 Which polynomial does 0x2b represent?

2 encodes 0010 and b encodes 1011, so 0x2b encodes the bitstring 0010 1011 which
represents x° + 2% + x + 1.

Q.3 Compute 0x53 4 0xb8.

Addition is a simple XOR. 0x53 encodes 01010011 and 0xb8 encodes 1011 1000.
The XOR is 11101011 which is encoded by Oxeb. So, 0x53 + 0xb8 = Oxeb.

Q.4 Compute 0x21 x 0x25.

0x21 represents the polynomial z° + 1. 0x25 represents the polynomial xz° + x> + 1.
We have

P4+ x @+ +1) =20 +a"+2205 22 +1=20 42" + 22 41

Since 28 = z* + 23+ x4+ 1 we have 2° = 2P+ 2t + 22 + 2 and 210 = 26 + 2% + 23 + 22,
So,

(2541 x (2422 +1) = 2042 +2°+1 = 2" +2% 42+ 234222 +1 = 2T +28 4 2P a3 41

Now, x7 + 25 4+ 25 + 22 + 1 is represented by 0xe9. So, 0x21 x 0x25 = 0xe9.

Q.5 Compute the inverse of 0x02.
Hint: look at P(x).

Since x¥+a+ax3+x+1 = 0, by multiplying by 2~ we obtain z"+x3+2>+1+2~ 1 =0,
so 7t =27 + 2% + 22 + 1. Changing this into hexadecimal bytes, this gives

0x02~ ! = 0x8d




Q.6 Show that M ! is of form

0x0e 0x0b 0x0d 0x09
0x09
0x0d
0x0b

where all missing terms are in the set {0x09, 0x0b, 0x0d, 0x0Oe}.



We first compute

0x02 0x03 0x01 0x01 0x0e 0x0e
0x01 0x02 0x03 0x01 y 0x09 — M« 0x09
0x01 0x01 0x02 0x03 0x0d 0x0d
0x03 0x01 0x01 0x02 0x0b 0x0b

By writing this with polynomials, this gives

0x0e r z+1 1 1 w42+ 1
A s | 0x09 | 1 x x+1 1 " 3 +1 _ |0
0x0d 1 1 r z+1 2+ +1 0
0x0b z+1 1 1 = B +z+1 0

By rotating the columns of M and the rows of the vector in the product we obtain

0x01 0x02 0x03 0x01 0x0b 1
0x01 0x01 0x02 0x03 y Ox0e | | O
0x03 0x01 0x01 0x02 0x09 0
0x02 0x03 0x01 0x01 0x0d 0

Now, by rotating the rows of the matriz and of the result, we obtain

0x02 0x03 0x01 0x01 0x0b 0x0b 0
0x01 0x02 0x03 0x01 « 0x0e M x 0x0e _ 1
0x01 0x01 0x02 0x03 0x09 0x09 0
0x03 0x01 0x01 0x02 0x0d 0x0d 0

By redoing the same, we obtain

0x0d 0
0x0b 0
M X 0x0e | |1
0x09 0
and
0x09 0
0x0d 0
M1 oxon | = | 0
0x0e 1
So,
0x0e 0x0b 0x0d 0x09 1000
M x 0x09 0x0e 0x0b 0x0d | | 0100
0x0d 0x09 0x0e 0xOb | [ 0010
0x0b 0x0d 0x09 0x0e 0001

which gives the inverse of M and proves the required properties.




