Cryptography and Security - Midterm Exam Solution

Serge Vaudenay

24.11.2011

- duration: 1h45
- no documents is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- exam proctors will not answer any technical question during the exam
- answers to every exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 A Weird Mode of Operation

In this exercise, we assume that we have a block cipher C and we use it in the following mode of operation: to encrypt a sequence of blocks x_{1}, \ldots, x_{n}, we initialize a counter t to some IV value, then we compute

$$
y_{i}=t_{i} \oplus C_{K}\left(x_{i}\right)
$$

for every i where K is the encryption key and $t_{i}=\mathrm{IV}+i$. The ciphertext is

$$
\mathrm{IV}, y_{1}, \ldots, y_{n}
$$

Namely, IV is sent in clear.
Q. 1 Is this mode of operation equivalent to something that you already know? Say why?

It is equivalent to the ECB mode. Namely, a passive adversary can compute t_{i} and then $y_{i} \oplus t_{i}$ for every i. This gives the $E C B$ encryption of x_{1}, \ldots, x_{n}.
Q. 2 Does the IV need to be unique?

> No.
Q. 3 What kind of security problem does this mode of operation suffer from?

Like the ECB mode, if the entropy of a block x_{i} is low, then $y_{i} \oplus t_{i}$ repeats. For instance, $x_{i}=x_{j}$ is equivalent to $y_{i} \oplus t_{i}=y_{j} \oplus t_{j}$ which can be observed with values which are sent over the insecure channel.

2 RSA Modulo 1000001

Given $a_{1}, a_{2}, \ldots, a_{n} \in\{0,1, \ldots, 9\}$, we denote by $\overline{a_{1} a_{2} \cdots a_{n}}$ the decimal number equal to $10\left(10\left(\cdots 10 a_{1}+a_{2} \cdots\right)+a_{n-1}\right)+a_{n}$.
Q. 1 Consider a decimal number $\overline{a b c d e f}$. Show that

$$
\overline{a b c d e f} \equiv \overline{a b}-\overline{c d}+\overline{e f} \quad(\bmod 101)
$$

As an application, compute $336634 \bmod 101$ and $663368 \bmod 101$.

We have

$$
\begin{aligned}
\overline{a b c d e f} & =10(10(10(10(10 a+b)+c)+d)+e)+f \\
& =100^{2}(10 a+b)+100(10 c+d)+(10 e+f)
\end{aligned}
$$

Since $100 \equiv-1 \quad(\bmod 101)$, this writes

$$
\overline{a b c d e f} \equiv(10 a+b)-(10 c+d)+(10 e+f) \quad(\bmod 101)
$$

which is what we had to prove. So,

$$
336634 \equiv 33-66+34=1 \quad(\bmod 101)
$$

and

$$
663368 \equiv 66-33+68=101 \equiv 0 \quad(\bmod 101)
$$

which yields $336634 \bmod 101=1$ and $663368 \bmod 101=0$.
Q. 2 Compute the inverse of $x=1000$ modulo $p=101$.

A general method consists of applying the extended Euclid algorithm. We have

$$
\begin{array}{lll}
\boldsymbol{x}_{1}=(1000,1,0) & \boldsymbol{x}_{2}=(101,0,1) & \\
\boldsymbol{x}_{2}=(101,0,1) & \boldsymbol{x}_{3}=(91,1,--9) & \boldsymbol{x}_{3}=\boldsymbol{x}_{1}-9 \boldsymbol{x}_{2} \\
\boldsymbol{x}_{3}=(91,1,-9) & \boldsymbol{x}_{4}=(10,-1,10) & \boldsymbol{x}_{4}=\boldsymbol{x}_{2}-\boldsymbol{x}_{3} \\
\boldsymbol{x}_{4}=(10,-1,10) & \boldsymbol{x}_{5}=(1,10,-99) & \boldsymbol{x}_{5}=\boldsymbol{x}_{3}-9 \boldsymbol{x}_{4} \\
\boldsymbol{x}_{5}=(1,10,-99) & \boldsymbol{x}_{6}=(0,-101,1000) & \boldsymbol{x}_{6}=\boldsymbol{x}_{4}-10 \boldsymbol{x}_{5}
\end{array}
$$

so $1=1000 \times 10-101 \times 99$. Therefore, $x^{-1} \bmod p=10$.
Q. 3 Consider a decimal number $\overline{a b c d e f}$. Show that

$$
\overline{a b c d e f} \equiv \overline{a b 00}-\overline{a b}+\overline{c d e f} \quad(\bmod 9901)
$$

As an application, compute $336634 \bmod 9901$ and $663368 \bmod 9901$.

Just like before, we have

$$
\begin{aligned}
\overline{a b c d e f} & =10(10(10(10(10 a+b)+c)+d)+e)+f \\
& =10^{4}(10 a+b)+\overline{c d e f}
\end{aligned}
$$

Since $10^{4} \equiv 100-1 \quad(\bmod 9901)$, this writes

$$
\overline{a b c d e f} \equiv 100(10 a+b)-(10 a+b)+\overline{c d e f} \quad(\bmod 101)
$$

which is what we had to prove. So,

$$
336634 \equiv 3300-33+6634=9901 \equiv 0 \quad(\bmod 9901)
$$

and

$$
663368 \equiv 6600-66+3368=9902 \equiv 1 \quad(\bmod 9901)
$$

which yields $336634 \bmod 101=0$ and $663368 \bmod 101=1$.
Q. 4 Compute $x^{199} \bmod q$ for $x=1000$ and $q=9901$.

Then, $x^{199} \equiv x^{3} \times\left(x^{4}\right)^{49} \quad(\bmod q)$. We have

$$
x^{2}=1000^{2}=1000000 \equiv 10000-100+0000=9900 \equiv-1 \quad(\bmod q)
$$

so $x^{4} \bmod q=1$ and $x^{3} \bmod q=-x \bmod q=8901$. Thus, $b=8901$.
Applying the square-and-multiply algorithm would have led to $x^{4} \bmod q=1$ as well.
Q. 5 Given a and b, show that $x=336634 a+663368 b$ is such that $x \bmod 101=a$ and $x \bmod 9901=b$.

We have $336634 \bmod 101=1$ and $663368 \bmod 101=0$ so, by linearity, we have $x \equiv a \quad(\bmod 101)$. We have $336634 \bmod 9901=0$ and $663368 \bmod 9901=1$ so, by linearity, we have $x \equiv b(\bmod 9901)$. This expression for x is actually the inverse formula for the Chinese remainder theorem using moduli 101 and 9901 (note that they are coprime).
Q. 6 Given $p=101$ and $q=9901$, we let $N=p q$. Compute $\varphi(N)$ and factor it into a product of prime numbers.

Since p and q are prime, we have

$$
\varphi(N)=(p-1)(q-1)=100 \times 9900=990000=10^{4} \times 9 \times 11=2^{4} \times 3^{2} \times 5^{4} \times 11
$$

Q. 7 Let e be an integer. Show that e is a valid RSA exponent for modulus N if and only if there is no prime factor of $\varphi(N)$ dividing e.
e is a valid RSA exponent if and only if $\operatorname{gcd}(e, \varphi(N))=1$ which is if and only if none of the prime factors of $\varphi(N)$ divide e. Since the list of prime factors of $\varphi(N)$ is $\{2,3,5,11\}$, we obtain the result.
Q. 8 Show that $e=199$ is a valid RSA exponent for modulus N and compute the encryption of $x=1000$ for this public key.

> 199 has no prime factor in $\{2,3,5,11\}$ so it is a valid exponent. To compute $x^{e} \bmod$ N, we use the Chinese remainder theorem. We compute $a=x^{e} \bmod p$ and $b=$ $x^{e} \bmod q$.
> We have $a=x^{199} \bmod 101=x^{199 \bmod 100} \bmod 101=x^{-1} \bmod 101=10$ due to $Q .2$. Similarly, we have $b=x^{199} \bmod 9901=8901$ due to Q.4. Finally,
> $x^{e} \bmod N=(336634 \times 10+663368 \times 8901) \bmod N=5908004908 \bmod N=999001$
> So, the encryption of x is 999001 .

3 AES Galois Field and AES Decryption

We briefly recall the AES block cipher here. It encrypts a block specified as a 4×4 matrix of bytes s and using a sequence W_{0}, \ldots, W_{n} of matrices which are derived from a secret key. For convenience the row and columns indices range from 0 to 3 . For instance, $s_{1,3}$ means the term of s in the second row and last column. The main AES encryption function is defined by the following pseudocode:

```
AESencryption \((s, W)\)
    AddRoundKey \(\left(s, W_{0}\right)\)
    for \(r=1\) to \(n-1\) do
        SubBytes \((s)\)
        ShiftRows(s)
        MixColumns(s)
        AddRoundKey \(\left(s, W_{r}\right)\)
    end for
    SubBytes \((s)\)
    ShiftRows ( \(s\) )
    AddRoundKey \(\left(s, W_{n}\right)\)
```

AddRoundKey $\left(s, W_{r}\right)$ is replacing s by $s \oplus W_{r}$, the component-wise XOR of matrices s and W_{r}. $\operatorname{SubBytes}(s)$ is replacing s by a new matrix in which the term at position i, j is $S\left(s_{i, j}\right)$, where S is a fixed permutation of the set of all byte values. ShiftRows (s) is replacing s by a new matrix in which the term at position i, j is $s_{i, i+j \bmod 4}$. MixColumns (s) is replacing s by a new matrix in which the column at position j is $M \times s_{., j}$, where $s_{., j}$ denotes the column at position j of s and M is a fixed matrix defined by

$$
M=\left(\begin{array}{llll}
0 \times 02 & 0 \times 03 & 0 \times 01 & 0 \times 01 \\
0 \times 01 & 0 \times 02 & 0 \times 03 & 0 \times 01 \\
0 \times 01 & 0 \times 01 & 0 \times 02 & 0 \times 03 \\
0 \times 03 & 0 \times 01 & 0 \times 01 & 0 \times 02
\end{array}\right)
$$

The matrix product inherits from the algebraic structure $\mathrm{GF}(256)$ on the set of all byte values. Namely, each byte represents a polynomial on variable x of degree at most 7 and coefficients in \mathbf{Z}_{2}. Polynomials are added and multiplied modulo 2 and modulo $P(x)=x^{8}+x^{4}+x^{3}+x+1$. The correspondence between bytes and polynomial works as follows: each byte a is a sequence of 8 bits a_{7}, \ldots, a_{0} which is represented in hexadecimal $0 \mathrm{x} u v$ where u and v are two hexadecimal digits (i.e. between 0 and \mathbf{f}), u encodes $a_{7} a_{6} a_{5} a_{4}$, and v encodes $a_{3} a_{2} a_{1} a_{0}$ by the following encoding rule:

$$
\begin{array}{llll}
0000 \rightarrow 0 & 0100 \rightarrow 4 & 1000 \rightarrow 8 & 1100 \rightarrow c \\
0001 \rightarrow 1 & 0101 \rightarrow 5 & 1001 \rightarrow 9 & 1101 \rightarrow \mathrm{~d} \\
0010 \rightarrow 2 & 0110 \rightarrow 6 & 1010 \rightarrow \mathrm{a} & 1110 \rightarrow e \\
0011 \rightarrow 3 & 0111 \rightarrow 7 & 1011 \rightarrow \mathrm{~b} & 111 \rightarrow \mathrm{f}
\end{array}
$$

Q. 1 Provide a pseudocode for AESdecryption (s, W), for AES decryption.

We remark that AddRoundKey is self-inverse. We further remark that SubBytes and ShiftRows commute.

AESdecryption (s, W)
: AddRoundKey $\left(s, W_{n}\right)$
for $r=n-1$ down to 1 do
InvSubBytes(s)
InvShiftRows(s)
AddRoundKey $\left(s, W_{r}\right)$
InvMixColumns (s)
end for
InvSubBytes(s)
InvShiftRows (s)
: AddRoundKey $\left(s, W_{0}\right)$
InvSubBytes(s) is replacing s by a new matrix in which the term at position i, j is $S^{-1}\left(s_{i, j}\right)$. InvShiftRows (s) is replacing s by a new matrix in which the term at position i, j is $s_{i,-i+j \bmod 4}$. InvMixColumns (s) is replacing s by a new matrix in which the column at position j is $M^{-1} \times s_{\text {., }}$.
Q. 2 Which polynomial does 0 x 2 b represent?

2 encodes 0010 and b encodes 1011, so 0 x 2 b encodes the bitstring 00101011 which represents $x^{5}+x^{3}+x+1$.
Q. 3 Compute $0 \times 53+0 x b 8$.

Addition is a simple XOR. 0x53 encodes 01010011 and 0xb8 encodes 10111000. The XOR is 11101011 which is encoded by 0 xeb . So, $0 \mathrm{x} 53+0 \mathrm{xb} 8=0 \mathrm{xeb}$.
Q. 4 Compute $0 \times 21 \times 0 \times 25$.
0×21 represents the polynomial $x^{5}+1.0 \times 25$ represents the polynomial $x^{5}+x^{2}+1$. We have

$$
\left(x^{5}+1\right) \times\left(x^{5}+x^{2}+1\right)=x^{10}+x^{7}+2 x^{5}+x^{2}+1 \equiv x^{10}+x^{7}+x^{2}+1
$$

Since $x^{8} \equiv x^{4}+x^{3}+x+1$ we have $x^{9} \equiv x^{5}+x^{4}+x^{2}+x$ and $x^{10} \equiv x^{6}+x^{5}+x^{3}+x^{2}$. So,
$\left(x^{5}+1\right) \times\left(x^{5}+x^{2}+1\right) \equiv x^{10}+x^{7}+x^{2}+1 \equiv x^{7}+x^{6}+x^{5}+x^{3}+2 x^{2}+1 \equiv x^{7}+x^{6}+x^{5}+x^{3}+1$
Now, $x^{7}+x^{6}+x^{5}+x^{3}+1$ is represented by 0 xe 9 . So, $0 \mathrm{x} 21 \times 0 \times 25=0 \mathrm{xe} 9$.
Q. 5 Compute the inverse of 0×02.

Hint: look at $P(x)$.
Since $x^{8}+x^{4}+x^{3}+x+1 \equiv 0$, by multiplying by x^{-1} we obtain $x^{7}+x^{3}+x^{2}+1+x^{-1} \equiv 0$, so $x^{-1}=x^{7}+x^{3}+x^{2}+1$. Changing this into hexadecimal bytes, this gives

$$
0 \times 02^{-1}=0 \times 8 d
$$

Q. 6 Show that M^{-1} is of form

$$
M^{-1}=\left(\begin{array}{cccc}
0 \times 0 \mathrm{e} & 0 \mathrm{x} 0 \mathrm{~b} & 0 \mathrm{x} 0 \mathrm{~d} 0 \mathrm{x} 09 \\
0 \mathrm{x} 09 & \cdot & \cdot & \cdot \\
0 \mathrm{x} 0 \mathrm{~d} & \cdot & \cdot & \cdot \\
0 \mathrm{x} 0 \mathrm{~b} & \cdot & \cdot & \cdot
\end{array}\right) .
$$

where all missing terms are in the set $\{0 \mathrm{x} 09,0 \mathrm{x} 0 \mathrm{~b}, 0 \mathrm{x} 0 \mathrm{~d}, 0 \mathrm{x} 0 \mathrm{e}\}$.

We first compute

$$
\left(\begin{array}{cccc}
0 x 02 & 0 x 03 & 0 x 01 & 0 x 01 \\
0 x 01 & 0 x 02 & 0 x 03 & 0 x 01 \\
0 x 01 & 0 x 01 & 0 x 02 & 0 x 03 \\
0 x 03 & 0 x 01 & 0 x 01 & 0 x 02
\end{array}\right) \times\left(\begin{array}{c}
0 x 0 e \\
0 x 09 \\
0 x 0 d \\
0 x 0 b
\end{array}\right)=M \times\left(\begin{array}{c}
0 x 0 e \\
0 x 09 \\
0 x 0 d \\
0 x 0 b
\end{array}\right)
$$

By writing this with polynomials, this gives

$$
M \times\left(\begin{array}{c}
\text { 0x0e } \\
\text { 0x09 } \\
\text { 0x0d } \\
\text { 0x0b }
\end{array}\right)=\left(\begin{array}{cccc}
x & x+1 & 1 & 1 \\
1 & x & x+1 & 1 \\
1 & 1 & x & x+1 \\
x+1 & 1 & 1 & x
\end{array}\right) \times\left(\begin{array}{c}
x^{3}+x^{2}+x \\
x^{3}+1 \\
x^{3}+x^{2}+1 \\
x^{3}+x+1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

By rotating the columns of M and the rows of the vector in the product we obtain

$$
\left(\begin{array}{ccccc}
0 x 01 & 0 x 02 & 0 x 03 & 0 x 01 \\
0 x 01 & 0 x 01 & 0 x 02 & 0 x 03 \\
0 x 03 & 0 x 01 & 0 x 01 & 0 x 02 \\
0 x 02 & 0 x 03 & 0 x 01 & 0 x 01
\end{array}\right) \times\left(\begin{array}{c}
0 x 0 b \\
0 x 0 e \\
0 x 09 \\
\text { 0x0d }
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Now, by rotating the rows of the matrix and of the result, we obtain

$$
\left(\begin{array}{cccc}
0 x 02 & 0 x 03 & 0 x 01 & 0 x 01 \\
0 x 01 & 0 x 02 & 0 x 03 & 0 x 01 \\
0 x 01 & 0 x 01 & 0 x 02 & 0 x 03 \\
0 x 03 & 0 x 01 & 0 x 01 & 0 x 02
\end{array}\right) \times\left(\begin{array}{c}
0 x 0 b \\
0 x 0 e \\
0 x 09 \\
0 x 0 d
\end{array}\right)=M \times\left(\begin{array}{c}
0 x 0 b \\
0 x 0 e \\
0 x 09 \\
0 x 0 d
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

By redoing the same, we obtain

$$
M \times\left(\begin{array}{c}
0 \mathrm{x} 0 \mathrm{~d} \\
0 \mathrm{x} 0 \mathrm{~b} \\
0 \mathrm{x0e} \\
0 \mathrm{x09}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

and

$$
M \times\left(\begin{array}{c}
0 \mathrm{x} 09 \\
0 \mathrm{x} 0 \mathrm{~d} \\
0 \mathrm{x} 0 \mathrm{~b} \\
0 \mathrm{x} 0 \mathrm{e}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

So,

$$
M \times\left(\begin{array}{cccc}
0 x 0 e & 0 x 0 b & 0 x 0 d & 0 x 09 \\
0 x 09 & 0 x 0 e & 0 x 0 b & 0 x 0 d \\
0 x 0 d & 0 x 09 & 0 x 0 e & 0 x 0 b \\
0 x 0 b & 0 x 0 d & 0 x 09 & 0 x 0 e
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which gives the inverse of M and proves the required properties.

