# Cryptography and Security - Midterm Exam 

Ioana Boureanu and Serge Vaudenay

30.11.2012

- duration: 1h45
- no documents is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- (if extra space is needed:) the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!


## 1 Message Encoding in a Subgroup of $\mathrm{Z}_{p}^{*}$ of Prime Order

In what follows, $p$ is an odd prime number which can be written $p=2 q+1$ with $q$ being another odd prime number.
Q. 1 What is the order of $\mathbf{Z}_{p}^{*}$ ?

List all factors of this number.
What are the orders of 1 and -1 in $\mathbf{Z}_{p}^{*}$ ?
Q. 2 If $x \in \mathrm{QR}_{p}$ is such that $x \neq 1$, show that $x$ generates $\mathrm{QR}_{p}$.

Hint: What is the order of $\mathrm{QR}_{p}$ ?
Q. 3 Let $\mathrm{QR}_{p}$ be the set of all quadratic residues of $\mathbf{Z}_{p}^{*}$. Show that for all $x \in \mathbf{Z}_{p}^{*}$, we have $x \in \mathrm{QR}_{p}$ if and only if $x^{\frac{p-1}{2}}=1$ in $\mathbf{Z}_{p}$.
Q. 4 Given $x \in\{1, \ldots, q\}$, show that the cardinality of $\{x,-x\} \cap \mathrm{QR}_{p}$ is 1 .

Hint: is -1 in $\mathrm{QR}_{p}$ ?
Q. 5 Given $x \in\{1, \ldots, q\}$, let $\operatorname{map}(x)$ be the only element between $x$ and $-x$ which is a quadratic residue. Show that map is an one-to-one mapping between $\{1, \ldots, q\}$ and $\operatorname{QR}_{p}$.

## 2 Arithmetic Modulo 101 and 99999

Let $m=101, n=99$ 999, $a=4499955$ and $b=5599945$.
Q. 1 For $N=10^{k} \pm 1, k \geq 1$, give a method to compute by hand the modulo $N$ reduction of a big decimal number.
Q. 2 Compute $a \bmod m, a \bmod n, b \bmod m$, and $b \bmod n$.
Q. 3 Deduce the lowest positive multiple of $n$ which is equal to 2 modulo $m$.

## 3 Every Day I'm Shuffling

Let $n$ and $r$ be integers. We consider the vector space $\operatorname{GF}(2)^{n}$ over $\operatorname{GF}(2)$. A vector $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ has $n$ binary coordinates $x_{1}, \ldots, x_{n}$. We denote by $\oplus$ the addition of vectors. We denote by $x \cdot y$ the inner product between two vectors $x$ and $y$. I.e., $x \cdot y=x_{1} y_{1}+$
$\cdots+x_{n} y_{n} \bmod 2$. Finally, given two vectors $x$ and $y$, we define the function $\max (x, y)$ giving the one vector among $x$ and $y$ which represents the binary expansion of the largest integer. (Assume that bits written from left to right, i.e. $x_{n}$ is the least significant bit.)

Given $2 r$ vectors $K_{1}, \ldots, K_{r}, L_{1}, \ldots, L_{r}$, we denote $K L=\left(K_{1}, \ldots, K_{r}, L_{1}, \ldots, L_{r}\right)$ and we define the encryption $E_{K L}(X)$ of a vector $X$ with key $K L$ by the following algorithm:

```
\(\operatorname{proc} E_{K L}(X)\)
    for \(i=1\) to \(r\) do
        \(X^{\prime} \leftarrow K_{i} \oplus X\)
        \(\hat{X} \leftarrow \max \left(X, X^{\prime}\right)\)
        if \(L_{i} \cdot \hat{X}=1\) then \(X \leftarrow X^{\prime}\)
    end for
    return \(X\)
```

Q. 1 Let $j$ be the smallest index such that the $j$ th component of $K_{i}$ is 1 . In iteration $i$, we consider the values of $X$ and $\hat{X}$ in step 3. Show that $\hat{X}=X \oplus\left(1-X_{j}\right) K_{i}$.
Q. 2 In iteration $i$, we let $X_{\text {new }}$ be the value of $X$ after step 4 and still consider the same $X$ and $\hat{X}$. Show that $X_{\text {new }}=X \oplus\left(L_{i} \cdot \hat{X}\right) K_{i}$.
Q. 3 Deduce that for whatever $K L, x$, and $y$, we have $E_{K L}(x \oplus y) \oplus E_{K L}(0)=E_{K L}(x) \oplus E_{K L}(y)$. Q. 4 Propose a way to break this symmetric encryption scheme.

