Cryptography and Security — Midterm Exam Solution

Ioana Boureanu and Serge Vaudenay

30.11.2012

- duration: 1h45
- no documents is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- (if extra space is needed:) the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 Message Encoding in a Subgroup of Z_p^* of Prime Order

In what follows, p is an odd prime number which can be written p = 2q + 1 with q being another odd prime number.

Q.1 What is the order of \mathbf{Z}_{p}^{*} ?

List all factors of this number. What are the orders of 1 and -1 in \mathbb{Z}_p^* ?

Since p is a prime number, \mathbf{Z}_p^* is of order p-1 = 2q. The factors of p-1 are thus 1, 2, q, and 2q. 1 has order 1 since this is the smallest power i such that $x^i = 1$ in \mathbf{Z}_p^* . -1 has order 2 for the same reason.

Q.2 If $x \in QR_p$ is such that $x \neq 1$, show that x generates QR_p . Hint: What is the order of QR_p ?

> The order of QR_p is known to be $\frac{p-1}{2} = q$. Here is a proof of this: Quadratic residues are roots of $x^{\frac{p-1}{2}} = 1$. Since we are in a field, we have at most $\frac{p-1}{2}$ roots. Let i be a non-quadratic residue. For any non-quadratic residue y, iy must be a quadratic residue. Since $y \mapsto iy$ is a 1-to-1 mapping, we have at most $\frac{p-1}{2}$ non-quadratic residues.

> Now, Z_p^* has p-1 terms which are either quadratic residues or non-quadratic residues. So, we have exactly $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ non-quadratic residues. So, QR_p is a group of order q.

The order of x must divide the order of QR_p which is q. Since q is prime, the order must be 1 or q. If $x \neq 1$, the order cannot be 1. So, x has order q. This means that x generates QR_p .

Q.3 Let QR_p be the set of all quadratic residues of \mathbf{Z}_p^* . Show that for all $x \in \mathbf{Z}_p^*$, we have $x \in QR_p$ if and only if $x^{\frac{p-1}{2}} = 1$ in \mathbf{Z}_p .

If $x \in QR_p$, we can write $x = y^2$. So, $x^{\frac{p-1}{2}} = y^{p-1} = 1$ due to the Little Fermat Theorem. Conversely, if $x^{\frac{p-1}{2}} = 1$, since we know that \mathbf{Z}_p^* is cyclic, we can write $x = g^i$ for some generator g of \mathbf{Z}_p^* and have $g^{i\frac{p-1}{2}} = 1$. Since g is a generator, this implies that p-1 divides $i\frac{p-1}{2}$, so that i is even. Hence, i = 2j for some integer j and we have $x = g^{2j} = y^2$ with $y = g^j$. That is, x is a quadratic residue.

Q.4 Given $x \in \{1, ..., q\}$, show that the cardinality of $\{x, -x\} \cap QR_p$ is 1. Hint: is -1 in QR_p ?

> We have $(-1)^{\frac{p-1}{2}} = (-1)^q = -1$ since q is odd. So, -1 is not a quadratic residue in \mathbb{Z}_p^* . Since -1 is not a quadratic residue, x and -x cannot be quadratic residues at the same time. If x is not a quadratic residue, it means that $x^{\frac{p-1}{2}} = -1$. So, $(-x)^{\frac{p-1}{2}} = 1$. Therefore, -x is a quadratic residue. So, either x or -x is a quadratic residue, but not both.

Q.5 Given $x \in \{1, \ldots, q\}$, let map(x) be the only element between x and -x which is a quadratic residue. Show that map is an one-to-one mapping between $\{1, \ldots, q\}$ and QR_p .

We have already shown that it is a mapping. Given $y \in QR_p$, map(x) = y implies that x = y or x = -y. Since we cannot have y and -y belonging to $\{1, \ldots, q\}$ at the same time, map is 1-to-1.

2 Arithmetic Modulo 101 and 99 999

Let m = 101, n = 99999, a = 4499955 and b = 5599945.

Q.1 For $N = 10^k \pm 1$, $k \ge 1$, give a method to compute by hand the modulo N reduction of a big decimal number.

We group the digits by packets of k from the left to the right. In the case of $N = 10^k - 1$, we have $10^k \equiv 1 \pmod{N}$ so we can just add the obtained numbers and iterate on the result until it is less than 10^k . In the case of $N = 10^k + 1$, we have $10^k \equiv -1 \pmod{N}$ so we can alternate the numbers with + and - and iterate on the result. If the final number is negative, we can just add N. If the final number is N, we can replace it by 0.

Q.2 Compute $a \mod m$, $a \mod n$, $b \mod m$, and $b \mod n$.

When applying to the modulo m cases, we have $a \equiv 4\,49\,99\,55 \equiv 55 - 99 + 49 - 4 \equiv 1 \pmod{m}$ $b \equiv 5\,59\,99\,45 \equiv 45 - 99 + 59 - 5 \equiv 0 \pmod{m}$ When applying to the modulo n cases, we have $a \equiv 44\,99955 \equiv 44 + 99955 \equiv 99999 \equiv 0 \pmod{n}$ $b \equiv 55\,99945 \equiv 55 + 99945 \equiv 1\,000001 + 0 \equiv 1 \pmod{n}$ So, a is 1 modulo m and b is 0 modulo m. So, a is 0 modulo n and b is 1 modulo n.

Q.3 Deduce the *lowest* positive multiple of n which is equal to 2 modulo m.

By applying the Chinese Remainder Theorem, we obtain $(2a + 0b) \mod (mn) = 2 \times 4499955 = 8999910$.

3 Every Day I'm Shuffling

The following exercise is inspired from An Enciphering Scheme Based on a Card Shuffle by Tung Hoang, Morris, and Rogaway, published in the proceedings of Crypto'12 pp. 1–13, LNCS vol. 7417, Springer 2012; and by The End of Encryption based on Card Shuffling by Vaudenay, presented at the Rump Session of Crypto'12.

Let *n* and *r* be integers. We consider the vector space $GF(2)^n$ over GF(2). A vector $x = (x_1, \ldots, x_n)$ has *n* binary coordinates x_1, \ldots, x_n . We denote by \oplus the addition of vectors. We denote by $x \cdot y$ the inner product between two vectors *x* and *y*. I.e., $x \cdot y = x_1y_1 + \cdots + x_ny_n \mod 2$. Finally, given two vectors *x* and *y*, we define the function $\max(x, y)$ giving the one vector among *x* and *y* which represents the binary expansion of the largest integer. (Assume that bits written from left to right, i.e. x_n is the least significant bit.)

Given 2r vectors $K_1, \ldots, K_r, L_1, \ldots, L_r$, we denote $KL = (K_1, \ldots, K_r, L_1, \ldots, L_r)$ and we define the encryption $E_{KL}(X)$ of a vector X with key KL by the following algorithm:

proc $E_{KL}(X)$ 1: for i = 1 to r do 2: $X' \leftarrow K_i \oplus X$ 3: $\hat{X} \leftarrow \max(X, X')$ 4: if $L_i \cdot \hat{X} = 1$ then $X \leftarrow X'$ 5: end for 6: return X

Q.1 Let j be the smallest index such that the jth component of K_i is 1. In iteration i, we consider the values of X and \hat{X} in step 3. Show that $\hat{X} = X \oplus (1 - X_j)K_i$.

To compute $\max(X, X \oplus K_i)$, we have to compare the bits in X and $X \oplus K_i$ starting from the most significant ones. The first index where they can be compared is at position j since they are always equal before. The maximum is X if $X_j = 1$ and $X \oplus K_i$ otherwise. So, in all cases, it can be written $X \oplus (1 - X_j)K_i$.

Q.2 In iteration *i*, we let X_{new} be the value of *X* after step 4 and still consider the same *X* and \hat{X} . Show that $X_{\text{new}} = X \oplus (L_i \cdot \hat{X}) K_i$.

 X_{new} is equal to X if $L_i \cdot \hat{X} = 0$ and to $X \oplus K_i$ otherwise. So, in all cases, it can be written $X \oplus (L_i \cdot \hat{X})K_i$.

Q.3 Deduce that for whatever KL, x, and y, we have $E_{KL}(x \oplus y) \oplus E_{KL}(0) = E_{KL}(x) \oplus E_{KL}(y)$.

Due to the previous questions, we know that each iteration is just replacing X by

$$X_{new} = X \oplus (L_i \cdot (X \oplus (1 - X_j)K_i))K_i$$

= $X \oplus (L_i \cdot X)K_i \oplus X_j(L_i \cdot K_i)K_i \oplus (L_i \cdot K_i)K_i$

which is an affine function in X. Since the composition of affine functions is affine, we obtain that E_{KL} is an affine function as well. So, it satisfies $E_{KL}(x \oplus y) \oplus E_{KL}(0) = E_{KL}(x) \oplus E_{KL}(y)$. Q.4 Propose a way to break this symmetric encryption scheme.

Since E_{KL} is an affine function, it can be written $E_{KL}(X) = M \times X \oplus c$ for some matrix M and some constant vector c depending on KL. So, with a few known plaintexts-ciphertext pairs (X_i, Y_i) , we can recover M and c by solving a linear system of equations $Y_i = M \times X_i \oplus c$ in M and c. After solving, we can decrypt any message Y by $M^{-1} \times (Y \oplus c)$.