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– duration: 1h45
– no documents is allowed
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– (if extra space is needed:) the answers to each exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 Message Encoding in a Subgroup of Z∗
p of Prime Order

In what follows, p is an odd prime number which can be written p = 2q + 1 with q being
another odd prime number.

Q.1 What is the order of Z∗
p?

List all factors of this number.
What are the orders of 1 and −1 in Z∗

p?

Since p is a prime number, Z∗
p is of order p− 1 = 2q. The factors of p− 1 are thus

1, 2, q, and 2q.
1 has order 1 since this is the smallest power i such that xi = 1 in Z∗

p.
−1 has order 2 for the same reason.

Q.2 If x ∈ QRp is such that x 6= 1, show that x generates QRp.
Hint: What is the order of QRp?

The order of QRp is known to be p−1
2 = q. Here is a proof of this:

Quadratic residues are roots of x
p−1
2 = 1. Since we are in a field, we have at most

p−1
2 roots.

Let i be a non-quadratic residue. For any non-quadratic residue y, iy must be a
quadratic residue. Since y 7→ iy is a 1-to-1 mapping, we have at most p−1

2 non-
quadratic residues.
Now, Z∗

p has p − 1 terms which are either quadratic residues or non-quadratic

residues. So, we have exactly p−1
2 quadratic residues and p−1

2 non-quadratic residues.
So, QRp is a group of order q.

The order of x must divide the order of QRp which is q. Since q is prime, the order
must be 1 or q. If x 6= 1, the order cannot be 1. So, x has order q. This means that
x generates QRp.



Q.3 Let QRp be the set of all quadratic residues of Z∗
p. Show that for all x ∈ Z∗

p, we have

x ∈ QRp if and only if x
p−1
2 = 1 in Zp.

If x ∈ QRp, we can write x = y2. So, x
p−1
2 = yp−1 = 1 due to the Little Fermat

Theorem.
Conversely, if x

p−1
2 = 1, since we know that Z∗

p is cyclic, we can write x = gi for

some generator g of Z∗
p and have gi

p−1
2 = 1. Since g is a generator, this implies that

p− 1 divides ip−1
2 , so that i is even. Hence, i = 2j for some integer j and we have

x = g2j = y2 with y = gj. That is, x is a quadratic residue.

Q.4 Given x ∈ {1, . . . , q}, show that the cardinality of {x,−x} ∩ QRp is 1.
Hint: is −1 in QRp?

We have (−1)
p−1
2 = (−1)q = −1 since q is odd. So, −1 is not a quadratic residue in

Z∗
p.

Since −1 is not a quadratic residue, x and −x cannot be quadratic residues at the

same time. If x is not a quadratic residue, it means that x
p−1
2 = −1. So, (−x)

p−1
2 =

1. Therefore, −x is a quadratic residue. So, either x or −x is a quadratic residue,
but not both.

Q.5 Given x ∈ {1, . . . , q}, let map(x) be the only element between x and −x which is a
quadratic residue. Show that map is an one-to-one mapping between {1, . . . , q} and QRp.

We have already shown that it is a mapping. Given y ∈ QRp, map(x) = y implies
that x = y or x = −y. Since we cannot have y and −y belonging to {1, . . . , q} at the
same time, map is 1-to-1.



2 Arithmetic Modulo 101 and 99 999

Let m = 101, n = 99 999, a = 4499 955 and b = 5599 945.

Q.1 For N = 10k ± 1, k ≥ 1, give a method to compute by hand the modulo N reduction of a
big decimal number.

We group the digits by packets of k from the left to the right.
In the case of N = 10k − 1, we have 10k ≡ 1 (mod N) so we can just add the
obtained numbers and iterate on the result until it is less than 10k.
In the case of N = 10k + 1, we have 10k ≡ −1 (mod N) so we can alternate the
numbers with + and − and iterate on the result. If the final number is negative, we
can just add N . If the final number is N , we can replace it by 0.

Q.2 Compute a mod m, a mod n, b mod m, and b mod n.

When applying to the modulo m cases, we have

a ≡ 4 49 99 55 ≡ 55− 99 + 49− 4 ≡ 1 (mod m)

b ≡ 5 59 99 45 ≡ 45− 99 + 59− 5 ≡ 0 (mod m)

When applying to the modulo n cases, we have

a ≡ 44 99955 ≡ 44 + 99955 ≡ 99999 ≡ 0 (mod n)

b ≡ 55 99945 ≡ 55 + 99945 ≡ 1 000001 + 0 ≡ 1 (mod n)

So, a is 1 modulo m and b is 0 modulo m. So, a is 0 modulo n and b is 1 modulo n.

Q.3 Deduce the lowest positive multiple of n which is equal to 2 modulo m.

By applying the Chinese Remainder Theorem, we obtain (2a + 0b) mod (mn) =
2× 4 499 955 = 8 999 910.



3 Every Day I’m Shuffling

The following exercise is inspired from An Enciphering Scheme Based on a Card
Shuffle by Tung Hoang, Morris, and Rogaway, published in the proceedings of
Crypto’12 pp. 1–13, LNCS vol. 7417, Springer 2012; and by The End of Encryption
based on Card Shuffling by Vaudenay, presented at the Rump Session of Crypto’12.

Let n and r be integers. We consider the vector space GF(2)n over GF(2). A vector x =
(x1, . . . , xn) has n binary coordinates x1, . . . , xn. We denote by ⊕ the addition of vectors.
We denote by x · y the inner product between two vectors x and y. I.e., x · y = x1y1 +
· · ·+ xnyn mod 2. Finally, given two vectors x and y, we define the function max(x, y) giving
the one vector among x and y which represents the binary expansion of the largest integer.
(Assume that bits written from left to right, i.e. xn is the least significant bit.)

Given 2r vectors K1, . . . ,Kr, L1, . . . , Lr, we denote KL = (K1, . . . ,Kr, L1, . . . , Lr) and
we define the encryption EKL(X) of a vector X with key KL by the following algorithm:

proc EKL(X)
1: for i = 1 to r do
2: X ′ ← Ki ⊕X
3: X̂ ← max(X,X ′)
4: if Li · X̂ = 1 then X ← X ′

5: end for
6: return X

Q.1 Let j be the smallest index such that the jth component of Ki is 1. In iteration i, we
consider the values of X and X̂ in step 3. Show that X̂ = X ⊕ (1−Xj)Ki.

To compute max(X,X⊕Ki), we have to compare the bits in X and X⊕Ki starting
from the most significant ones. The first index where they can be compared is at
position j since they are always equal before. The maximum is X if Xj = 1 and
X ⊕Ki otherwise. So, in all cases, it can be written X ⊕ (1−Xj)Ki.

Q.2 In iteration i, we let Xnew be the value of X after step 4 and still consider the same X
and X̂. Show that Xnew = X ⊕ (Li · X̂)Ki.

Xnew is equal to X if Li · X̂ = 0 and to X ⊕Ki otherwise. So, in all cases, it can be
written X ⊕ (Li · X̂)Ki.

Q.3 Deduce that for whateverKL, x, and y, we have EKL(x⊕y)⊕EKL(0) = EKL(x)⊕EKL(y).

Due to the previous questions, we know that each iteration is just replacing X by

Xnew = X ⊕ (Li · (X ⊕ (1−Xj)Ki))Ki

= X ⊕ (Li ·X)Ki ⊕Xj(Li ·Ki)Ki ⊕ (Li ·Ki)Ki

which is an affine function in X. Since the composition of affine functions is affine,
we obtain that EKL is an affine function as well. So, it satisfies EKL(x ⊕ y) ⊕
EKL(0) = EKL(x)⊕ EKL(y).



Q.4 Propose a way to break this symmetric encryption scheme.

Since EKL is an affine function, it can be written EKL(X) = M ×X ⊕ c for some
matrix M and some constant vector c depending on KL. So, with a few known
plaintexts-ciphertext pairs (Xi, Yi), we can recover M and c by solving a linear system
of equations Yi = M×Xi⊕c in M and c. After solving, we can decrypt any message
Y by M−1 × (Y ⊕ c).


