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— no documents is allowed

— a pocket calculator is allowed

— communication devices are not allowed

— the exam invigilators will not answer any technical question during the exam

— (if extra space is needed:) the answers to each exercise must be provided on separate sheets
— readability and style of writing will be part of the grade

— do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 Message Encoding in a Subgroup of Z; of Prime Order

In what follows, p is an odd prime number which can be written p = 2¢ + 1 with ¢ being
another odd prime number.

Q.1 What is the order of Z?
List all factors of this number.
What are the orders of 1 and —1 in Z]’;?

Since p is a prime number, Zy is of order p —1 = 2q. The factors of p— 1 are thus
1, 2, q, and 2q.

1 has order 1 since this is the smallest power i such that z* =1 in Z,.

—1 has order 2 for the same reason.

Q.2 If z € QR,, is such that z # 1, show that x generates QR,,.
Hint: What is the order of QR,?

The order of QR,, is known to be % = q. Here is a proof of this:

Quadratic residues are roots of 7 = 1. Since we are in a field, we have at most
% T00tS.

Let i be a non-quadratic residue. For any non-quadratic residue y, iy must be a
quadratic residue. Since y — iy is a 1-to-1 mapping, we have at most % non-
quadratic residues.

Now, Z; has p — 1 terms which are either quadratic residues or non-quadratic
residues. So, we have exactly % quadratic residues and % non-quadratic residues.

So, QR,, is a group of order q.

The order of x must divide the order of QR, which is q. Since q is prime, the order
must be 1 or q. If x # 1, the order cannot be 1. So, x has order q. This means that
x generates QR,.




Q.3 Let QR be the set of all quadratic residues of Zj;. Show that for all z € Z, we have
x € QR,, if and only if 1'%71 =1in Z,.

If x € QR,, we can write x = y?. So, T = y?P~1 =1 due to the Little Fermat
Theorem.

Conversely, if T = 1, since we know that Zy, is cyclic, we can write x = g* for
some generator g of Z, and have gi% = 1. Since g is a generator, this implies that
p — 1 divides i%52, so that i is even. Hence, i = 2j for some integer j and we have

. 2 .
x = g% =y? withy = ¢°. That is, x is a quadratic residue.

Q.4 Given z € {1,...,q}, show that the cardinality of {z,—z} N QR is 1.
Hint: is —1 in QR,?

We have (—1)% = (—1)? = —1 since q is odd. So, —1 is not a quadratic residue in
Z,.

Since —1 is not a quadratic residue, x and —x cannot be quadratic residues at the
same time. If x is not a quadratic residue, it means that xpTil = —1. So, (—30)172;1 =
1. Therefore, —x is a quadratic residue. So, either x or —x is a quadratic residue,
but not both.

Q.5 Given z € {1,...,q}, let map(z) be the only element between z and —x which is a
quadratic residue. Show that map is an one-to-one mapping between {1,...,q} and QR,.

We have already shown that it is a mapping. Given y € QR,, map(z) = y implies
that x =y or x = —y. Since we cannot have y and —y belonging to {1,...,q} at the
same time, map s 1-to-1.




2 Arithmetic Modulo 101 and 99999

Let m =101, n = 99999, a = 4499955 and b = 5599 945.
Q.1 For N =10+ 1, k > 1, give a method to compute by hand the modulo N reduction of a

big decimal number.

We group the digits by packets of k from the left to the right.
In the case of N = 10F — 1, we have 10F = 1 (mod N) so we can just add the

obtained numbers and iterate on the result until it is less than 10F,

In the case of N = 10F + 1, we have 10F = —1 (mod N) so we can alternate the
numbers with + and — and iterate on the result. If the final number is negative, we
can just add N. If the final number is N, we can replace it by 0.

Q.2 Compute a mod m, a mod n, b mod m, and b mod n.

When applying to the modulo m cases, we have
a=4499955=55-99+49—-4=1 (mod m)
=5599945=45-99+59—-5=0 (mod m)

When applying to the modulo n cases, we have

a = 4499955 = 44 + 99955 = 99999 =0 (mod n)
b= 5599945 = 55+ 99945 = 1000001 + 0 =1 (mod n)

So, a is 1 modulo m and b is 0 modulo m. So, a is 0 modulo n and b is 1 modulo n.

Q.3 Deduce the lowest positive multiple of n which is equal to 2 modulo m.

By applying the Chinese Remainder Theorem, we obtain (2a + 0b) mod (mn)
2 x 4499955 = 8999 910.




3 Every Day I'm Shuffling

The following exercise is inspired from An Enciphering Scheme Based on a Card
Shuffle by Tung Hoang, Morris, and Rogaway, published in the proceedings of]
Crypto’12 pp. 1-13, LNCS vol. 7417, Springer 2012; and by The End of Encryption
based on Card Shuffling by Vaudenay, presented at the Rump Session of Crypto’12.

Let n and r be integers. We consider the vector space GF(2)™ over GF(2). A vector z =
(z1,...,zy,) has n binary coordinates z1,...,z,. We denote by @ the addition of vectors.
We denote by x -y the inner product between two vectors x and y. le., x -y = z1y1 +
-+ -+ zpy, mod 2. Finally, given two vectors x and y, we define the function max(x,y) giving
the one vector among = and y which represents the binary expansion of the largest integer.
(Assume that bits written from left to right, i.e. x, is the least significant bit.)

Given 2r vectors Ki,...,K,,L1,...,L,, we denote KL = (Ki,...,K,,L1,...,L,) and
we define the encryption Fxr(X) of a vector X with key KL by the following algorithm:

proc Exr(X)
1: fori=1tor do
2: X «K,oX
3 X + max(X, X
4 if L;- X =1 then X « X’
5: end for
6: return X

Q.1 Let j be the smallest index such that the jth component of K; is 1. In iteration i, we
consider the values of X and X in step 3. Show that X = X @ (1 — X;)K;.

To compute max(X, X @ K;), we have to compare the bits in X and X @ K; starting
from the most significant ones. The first index where they can be compared is at
position j since they are always equal before. The mazximum is X if X; = 1 and
X @ K; otherwise. So, in all cases, it can be written X @& (1 — X;)K;.

Q.2 In iteration 7, we let X,ew be the value of X after step 4 and still consider the same X
and X. Show that Xpew = X @ (L; - X) K.

Xnew 15 equal to X if L; - X =0 and to X ® K; otherwise. So, in all cases, it can be
written X @ (L; - X)K;.

Q.3 Deduce that for whatever K L, z, and y, we have Ex1(x®y)®Ex(0) = Exr(2)®Exr(y).

Due to the previous questions, we know that each iteration is just replacing X by

Xnew =X @ (Lz : (X S (1 - X]>Kl))KZ
=X@ (L - X)K;® X;(Li - K;)K; & (L; - K;)K;

which is an affine function in X. Since the composition of affine functions is affine,
we obtain that Exr is an affine function as well. So, it satisfies Exp(z @ y) @

Exi(0) = Exr(z) ® Exr(y)-




Q.4 Propose a way to break this symmetric encryption scheme.

Since Exr is an affine function, it can be written Exp(X) = M x X @ ¢ for some
matric M and some constant vector c¢ depending on KL. So, with a few known
plaintexts-ciphertext pairs (X;,Y;), we can recover M and ¢ by solving a linear system
of equations Y; = M x X;®c in M and c. After solving, we can decrypt any message
Y by M~ x (Y @ c).




