Cryptography and Security - Midterm Exam Solution

Ioana Boureanu and Serge Vaudenay

30.11.2012

- duration: 1h45
- no documents is allowed
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- (if extra space is needed:) the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 Message Encoding in a Subgroup of Z_{p}^{*} of Prime Order

In what follows, p is an odd prime number which can be written $p=2 q+1$ with q being another odd prime number.
Q. 1 What is the order of \mathbf{Z}_{p}^{*} ?

List all factors of this number.
What are the orders of 1 and -1 in \mathbf{Z}_{p}^{*} ?
Since p is a prime number, \mathbf{Z}_{p}^{*} is of order $p-1=2 q$. The factors of $p-1$ are thus 1, 2, q, and $2 q$.
1 has order 1 since this is the smallest power i such that $x^{i}=1$ in \mathbf{Z}_{p}^{*}.
-1 has order 2 for the same reason.
Q. 2 If $x \in \mathrm{QR}_{p}$ is such that $x \neq 1$, show that x generates QR_{p}.

Hint: What is the order of QR_{p} ?
The order of QR_{p} is known to be $\frac{p-1}{2}=q$. Here is a proof of this:
Quadratic residues are roots of $x^{\frac{p-1}{2}}=1$. Since we are in a field, we have at most $\frac{p-1}{2}$ roots.
Let i be a non-quadratic residue. For any non-quadratic residue y, iy must be a quadratic residue. Since $y \mapsto$ iy is a 1-to-1 mapping, we have at most $\frac{p-1}{2}$ nonquadratic residues.
Now, Z_{p}^{*} has $p-1$ terms which are either quadratic residues or non-quadratic residues. So, we have exactly $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ non-quadratic residues. So, QR_{p} is a group of order q.

The order of x must divide the order of QR_{p} which is q. Since q is prime, the order must be 1 or q. If $x \neq 1$, the order cannot be 1 . So, x has order q. This means that x generates QR_{p}.
Q. 3 Let QR_{p} be the set of all quadratic residues of \mathbf{Z}_{p}^{*}. Show that for all $x \in \mathbf{Z}_{p}^{*}$, we have $x \in \mathrm{QR}_{p}$ if and only if $x^{\frac{p-1}{2}}=1$ in \mathbf{Z}_{p}.

If $x \in \mathrm{QR}_{p}$, we can write $x=y^{2}$. So, $x^{\frac{p-1}{2}}=y^{p-1}=1$ due to the Little Fermat Theorem.
Conversely, if $x^{\frac{p-1}{2}}=1$, since we know that \mathbf{Z}_{p}^{*} is cyclic, we can write $x=g^{i}$ for some generator g of \mathbf{Z}_{p}^{*} and have $g^{i \frac{p-1}{2}}=1$. Since g is a generator, this implies that $p-1$ divides $i \frac{p-1}{2}$, so that i is even. Hence, $i=2 j$ for some integer j and we have $x=g^{2 j}=y^{2}$ with $y=g^{j}$. That is, x is a quadratic residue.
Q. 4 Given $x \in\{1, \ldots, q\}$, show that the cardinality of $\{x,-x\} \cap \mathrm{QR}_{p}$ is 1 .

Hint: is -1 in QR_{p} ?
We have $(-1)^{\frac{p-1}{2}}=(-1)^{q}=-1$ since q is odd. So, -1 is not a quadratic residue in \mathbf{Z}_{p}^{*}.
Since -1 is not a quadratic residue, x and $-x$ cannot be quadratic residues at the same time. If x is not a quadratic residue, it means that $x^{\frac{p-1}{2}}=-1$. So, $(-x)^{\frac{p-1}{2}}=$ 1. Therefore, $-x$ is a quadratic residue. So, either x or $-x$ is a quadratic residue, but not both.
Q. 5 Given $x \in\{1, \ldots, q\}$, let $\operatorname{map}(x)$ be the only element between x and $-x$ which is a quadratic residue. Show that map is an one-to-one mapping between $\{1, \ldots, q\}$ and QR_{p}.

We have already shown that it is a mapping. Given $y \in \mathrm{QR}_{p}, \operatorname{map}(x)=y$ implies that $x=y$ or $x=-y$. Since we cannot have y and $-y$ belonging to $\{1, \ldots, q\}$ at the same time, map is 1-to-1.

2 Arithmetic Modulo 101 and 99999

Let $m=101, n=99999, a=4499955$ and $b=5599945$.
Q. 1 For $N=10^{k} \pm 1, k \geq 1$, give a method to compute by hand the modulo N reduction of a big decimal number.

We group the digits by packets of k from the left to the right.
In the case of $N=10^{k}-1$, we have $10^{k} \equiv 1(\bmod N)$ so we can just add the obtained numbers and iterate on the result until it is less than 10^{k}.
In the case of $N=10^{k}+1$, we have $10^{k} \equiv-1(\bmod N)$ so we can alternate the numbers with + and - and iterate on the result. If the final number is negative, we can just add N. If the final number is N, we can replace it by 0 .
Q. 2 Compute $a \bmod m, a \bmod n, b \bmod m$, and $b \bmod n$.

When applying to the modulo m cases, we have

$$
\begin{aligned}
& a \equiv 4499955 \equiv 55-99+49-4 \equiv 1 \quad(\bmod m) \\
& b \equiv 5599945 \equiv 45-99+59-5 \equiv 0 \quad(\bmod m)
\end{aligned}
$$

When applying to the modulo n cases, we have

$$
\begin{aligned}
a & \equiv 4499955 \\
\equiv & \equiv 44+99955 \equiv 99999 \equiv 0 \quad(\bmod n) \\
b & \equiv 59945 \equiv 55+99945 \equiv 1000001+0 \equiv 1 \quad(\bmod n)
\end{aligned}
$$

So, a is 1 modulo m and b is 0 modulo m. So, a is 0 modulo n and b is 1 modulo n.
Q. 3 Deduce the lowest positive multiple of n which is equal to 2 modulo m.

By applying the Chinese Remainder Theorem, we obtain $(2 a+0 b) \bmod (m n)=$ $2 \times 4499955=8999910$.

3 Every Day I'm Shuffling

The following exercise is inspired from An Enciphering Scheme Based on a Card Shuffle by Tung Hoang, Morris, and Rogaway, published in the proceedings of Crypto'12 pp. 1-13, LNCS vol. 7417, Springer 2012; and by The End of Encryption based on Card Shuffling by Vaudenay, presented at the Rump Session of Crypto'12.

Let n and r be integers. We consider the vector space $\operatorname{GF}(2)^{n}$ over $\operatorname{GF}(2)$. A vector $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ has n binary coordinates x_{1}, \ldots, x_{n}. We denote by \oplus the addition of vectors. We denote by $x \cdot y$ the inner product between two vectors x and y. I.e., $x \cdot y=x_{1} y_{1}+$ $\cdots+x_{n} y_{n} \bmod 2$. Finally, given two vectors x and y, we define the function $\max (x, y)$ giving the one vector among x and y which represents the binary expansion of the largest integer. (Assume that bits written from left to right, i.e. x_{n} is the least significant bit.)

Given $2 r$ vectors $K_{1}, \ldots, K_{r}, L_{1}, \ldots, L_{r}$, we denote $K L=\left(K_{1}, \ldots, K_{r}, L_{1}, \ldots, L_{r}\right)$ and we define the encryption $E_{K L}(X)$ of a vector X with key $K L$ by the following algorithm:

```
proc E EKL (X)
    for }i=1\mathrm{ to }r\mathrm{ do
        X'}\leftarrow\mp@subsup{K}{i}{}\oplus
        \hat { X } \leftarrow \operatorname { m a x } ( X , X ^ { \prime } )
        if }\mp@subsup{L}{i}{}\cdot\hat{X}=1\mathrm{ then }X\leftarrow\mp@subsup{X}{}{\prime
    end for
    return X
```

Q. 1 Let j be the smallest index such that the j th component of K_{i} is 1 . In iteration i, we consider the values of X and \hat{X} in step 3 . Show that $\hat{X}=X \oplus\left(1-X_{j}\right) K_{i}$.

To compute $\max \left(X, X \oplus K_{i}\right)$, we have to compare the bits in X and $X \oplus K_{i}$ starting from the most significant ones. The first index where they can be compared is at position j since they are always equal before. The maximum is X if $X_{j}=1$ and $X \oplus K_{i}$ otherwise. So, in all cases, it can be written $X \oplus\left(1-X_{j}\right) K_{i}$.
Q. 2 In iteration i, we let $X_{\text {new }}$ be the value of X after step 4 and still consider the same X and \hat{X}. Show that $X_{\text {new }}=X \oplus\left(L_{i} \cdot \hat{X}\right) K_{i}$.
$X_{\text {new }}$ is equal to X if $L_{i} \cdot \hat{X}=0$ and to $X \oplus K_{i}$ otherwise. So, in all cases, it can be written $X \oplus\left(L_{i} \cdot \hat{X}\right) K_{i}$.
Q. 3 Deduce that for whatever $K L, x$, and y, we have $E_{K L}(x \oplus y) \oplus E_{K L}(0)=E_{K L}(x) \oplus E_{K L}(y)$.

Due to the previous questions, we know that each iteration is just replacing X by

$$
\begin{aligned}
X_{\text {new }} & =X \oplus\left(L_{i} \cdot\left(X \oplus\left(1-X_{j}\right) K_{i}\right)\right) K_{i} \\
& =X \oplus\left(L_{i} \cdot X\right) K_{i} \oplus X_{j}\left(L_{i} \cdot K_{i}\right) K_{i} \oplus\left(L_{i} \cdot K_{i}\right) K_{i}
\end{aligned}
$$

which is an affine function in X. Since the composition of affine functions is affine, we obtain that $E_{K L}$ is an affine function as well. So, it satisfies $E_{K L}(x \oplus y) \oplus$ $E_{K L}(0)=E_{K L}(x) \oplus E_{K L}(y)$.
Q. 4 Propose a way to break this symmetric encryption scheme.

> Since $E_{K L}$ is an affine function, it can be written $E_{K L}(X)=M \times X \oplus c$ for some matrix M and some constant vector c depending on $K L$. So, with a few known plaintexts-ciphertext pairs $\left(X_{i}, Y_{i}\right)$, we can recover M and c by solving a linear system of equations $Y_{i}=M \times X_{i} \oplus c$ in M and c. After solving, we can decrypt any message Y by $M^{-1} \times(Y \oplus c)$.

