
Cryptography and Security — Final Exam

Solution

Serge Vaudenay

22.1.2014

– duration: 3h00
– no document is allowed except one two-sided sheet
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– the answers to each exercise must be provided on separate sheets
– readability and style of writing will be part of the grade
– do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 AES Arithmetics

We consider all polynomials in terms of x, where x is a solution to z8 + z4 + z3 + z + 1 = 0,
with coefficients in Z2. This is supposed to define GF(28). For convenience, each element is
represented in hexadecimal by a number whose binary expansion lists the binary coefficients
of the monomials from the one of highest degree to the one of lowest degree. For instance,
0xa3 represents x7 + x5 + x+ 1.

Q.1 Compute 0x95+ 0x54.

We have 0x95 = x7 + x4 + x2 + 1 and 0x54 = x6 + x4 + x2. So,

0x95+ 0x54 = x7 + x4 + x2 + 1 + x6 + x4 + x2

= x7 + x6 + 1

= 0xc1

Q.2 Compute 0x3c× 0x18.

We have 0x3c = x5 + x4 + x3 + x2 and 0x18 = x4 + x3. So,

0x3c× 0x18 = (x5 + x4 + x3 + x2)(x4 + x3)

= xx8 + x5

= x(x4 + x3 + x+ 1) + x5

= x4 + x2 + x

= 0x16

Q.3 Compute (0x02)−1.

We have

1

0x02
=

1

x

=
x8 + x4 + x3 + x

x
= x7 + x3 + x2 + 1

= 0x8d

Q.4 Show that z255 = 1 for all z 6= 0 in GF(28).

We have defined a finite field of 256 elements. Its multiplicative group consists of
all nonzero elements and has 255 elements. Due to the Lagrange theorem, we have
z255 = 1 for all z 6= 0.

Q.5 Compute (0x02)254.

Clearly, (0x02)254 = (0x02)255

0x02
= 1

0x02
= 0x8d.

Q.6 Give the hexadecimal representation of at least four solutions (including x) to z8 + z4 +
z3 + z + 1 = 0.
HINT: squaring is a linear operation!

If y satisfies y8 + y4 + y3 + y + 1 = 0, we note that

(y2)8 + (y2)4 + (y2)3 + (y2) + 1 = (y8 + y4 + y3 + y + 1)2 = 0

So, the roots are the iterated squares: x = 0x02, x2 = 0x04, x4 = 0x10, x8 = 0x1b,
etc.

Q.7 We recall that the trace function is defined by

tr(z) =
7∑

i=0

z2
i

Based on the previous question, compute tr(x).

Since the roots of z8 + z4 + z3 + z + 1 are the x2
i
, we have

z8 + z4 + z3 + z + 1 =
7∏

i=0

(
z − x2

i
)

So, the sum of the x2
i
is the coefficient of z7. Hence, tr(x) = 0.

2 Distribution of Birthdays

This semester, we had M = 81 registered students. We assume their birthdays are a priori
uniformly distributed and independent, in a calendar of N = 365 days. (Indeed, no student
is born on a February 29). In what follows, the a priori probabilities refers to the situation
before we look at the actual birthdays (which we will do in Q.5).

Q.1 What was the a priori probability that a given student is born on a January 22?

It is 1/N due to uniform distribution.

Q.2 What is the a priori probability that your right neighbor shares with you the same birth-
day? (Consider the left neighbor if you have no right neighbor.)

It is again 1/N due to uniform distribution and independence.

Q.3 For a given student, what is the a priori probability that there are exactly two others
students in the class sharing the same birthday with him?

The probability to be in a 3-collisions is
(
M−1
2

)
1
N2

(
1− 1

N

)M−3
≈ 1.9%.

We could do the same computation for a 2-collision: the probability that exactly one

other student share his birthday is
(
M−1
1

)
1
N

(
1− 1

N

)M−2
≈ 18%.

The probability that no student share his birthday is
(
1− 1

N

)M−1
≈ 80%.

Q.4 What was the a priori expected number of unordered pairs of different students with the
same birthday? Do the same for unordered triplets of students.
HINT: the number of pairs of students with the same birthday is∑

pair

1the students in pair share the same birthday

We have
(
M
2

)
pairs of students. Each pair share the same birthday with probability

1/N . So, is should be
(
M
2

)
1
N ≈ 8.9.

For triplets, this is
(
M
3

)
1
N2 ≈ 0.6.

Q.5 We observed
– 3 students are born on a March 2,
– 3 students are born on a May 5,
– 3 students are born on a July 4,
– 2 students are born on a April 14,
– 2 students are born on a May 9,
– 2 students are born on a June 2,
– 2 students are born on a June 13,
– 2 students are born on a August 5,
– 2 students are born on a November 1,

– 60 students have a unique birthday.
From the observation, how many unordered pairs of different students have the same
birthday? Do the same for unordered triplets of students. How to explain the discrepancy?

The pairs are from the pool of 2-collisions and 3-collisions. In a 3-collision, we have
3 pairs. In a 2-collision, we have a single pair. So, we have 3× 3 + 6× 1 = 15 pairs
of students with the same birthday. There is a gap between 15 and 8.9.
Clearly, we have only 3 triplets of students sharing the same birthday. There is a
gap between 3 and 0.6.
Most probably, the distribution of birthdays in the class is not uniform. This can
explain the discrepancy.

Q.6 If each student independently selects a numeric PIN code of fixed length with uniform
distribution, what is the minimal length (in digits) of the PIN code so that the probability
of having two students selecting the same PIN code is lower than 1%?

We have Pr[collision] ≤
(
M
2

)
1
N with N = 10`. We can solve

(
M
2

)
1
10`
≤ 0.01 and

obtain ` ≥ 2 + log10

(
M
2

)
≈ 5.5. So, ` = 6 digits are enough for Pr[collision] ≤ 1%.

With ` = 5 digits, we have

Pr[collision] = 1−
M−1∏
i=0

(
1− i

N

)
≈ 0.03

so 5 digits are not enough. Note that we obtain the same result by using the approx-
imation

Pr[collision] ≈ 1− e−
M2

2N

3 (Non-Uniform) Attack on P256

The following exercise is inspired from Non-Uniform Cracks in the Concrete: the
Power of free Precomputation by Bernstein and Lange, published in the proceedings
of Asiacrypt’13 pp. 321–340, LNCS vol. 8270, Springer 2013.

In this exercise, we consider the elliptic curve P256 defined with order n and a generator G.
The integer n is a prime number of 256 bits. Given a point Q of the curve, we want to find
x ∈ Zn such that Q = xG.

Note that this exercise is not specific to P256 but could apply to any cyclic group (with
additive notations) of order n.

We let H be a random function from the curve to Zn and define w(P) = P +H(P)G for
a point P of the curve. Given a point P0, the sequence defined by Pi = w(Pi−1) for i > 0 is
called a random walk starting from P0. We also consider a random Boolean function D. A
point P such that D(P) = 1 is called a distinguished point. We assume that for all points P
and P ′, all random variables H(P) and D(P ′) are independent, H(P) is uniformly distributed
in the curve, and Pr[D(P ′) = 1] = 1

t .

We consider the following algorithm defined by the parameters t and m, where the curve
is assumed to be hard coded:

Precomp:
1: clear the list L
2: for i = 1 to m do
3: pick a ∈ Zn at random and set P0 = aG
4: compute the random walk P0, . . . , P`−1 starting from P0 until either it loops (i.e., P`−1 ∈

{P0, . . . , P`−2}) or it reaches a distinguished point (i.e., D(P`−1) = 1)
5: if the random walk loops then
6: abort
7: end if
8: if not already there, insert P`−1 and its logarithm in the list L
9: end for

10: output L

(In the abort case, we can just restart with new functions H and D.)

We also consider the following algorithm where the curve and the list L from Precomp are
assumed to be hard coded:

Dlog(Q):
1: loop
2: pick a ∈ Zn at random and set P0 = aG+Q
3: compute the random walk P0, . . . , P`−1 until it loops or it reaches a distinguished point

P`−1

4: if the random walk did not loop then
5: if there exists (P`−1, b) ∈ L then
6: stop
7: end if
8: end if
9: end loop

Q.1 Show that in the Precomp algorithm, every point Pi, i = 0, . . . , `−1 has an easy-to-compute
discrete logarithm.

The starting point P0 has a known discrete logarithm a. If Pi is in the path and
its discrete logarithm ai is known, its successor Pi+1 = w(Pi) = Pi +H(Pi)G has a
known discrete logarithm ai+H(Pi). So, all points in the path have a known discrete
logarithm.

Q.2 How to slightly modify the algorithm Dlog so that when it stops, it gives the discrete
logarithm of Q?

In each step of the random walk, we set a ← a + H(Pi) so that at every time, we
have Pi = aP + Q. If we find Pi in the list with discrete logarithm b, we just yield
b− a as the discrete logarithm of Q.

Q.3 (Number of iterations.)
We assume that Dlog never finds a looping random walk (i.e., the condition in Step 4 is
always true). We further assume that Precomp visited at least kn

t points (for some value k,
where t is the parameter of the algorithm). Show that the expected number of iterations
of the loop in Dlog (Steps 2–8) is at most 1 + 1

k .
HINT: observe that the random walk can be described by the following process: we pick
a point at random and distinguishe the events that A: the point is already visited, B:
the point is not already visited but distinguished, C: the point is not already visited nor
distinguished. In the case of A, the random walk continues until a visited distinguished
point and succeed. In the case of B, the random walk failed and the algorithm iterate. In
the case of C, the random walk continues with a new point. No matter the stage of the
random walk, Pr[A]/Pr[B] is constant and at least k.

An iteration repeatedly picks a new point. If new, this new point is distinguished
with probability 1

t . But the point is not new with probability at least #visited
n ≥ k 1

t .
So, each new point has a probability to be new and distinguished with less than 1

k
times the probability of being not new. So, we reach a distinguished point from L with
probability at least k

k+1 and iterate with a probability less than 1
k+1 . So, the expected

number of iterations is at most 1 + 1
k .

Q.4 (No long walk.)
Given c > 1, we let λ = dct lnne. A long walk is a random walk P0, . . . , Pλ−1 which has no
distinguished point. Show that the probability that there exists a long walk is bounded
by n1−c.
HINT: show that for each P0, the probability that P0, . . . , Pλ−1 is a long walk is bounded
by n−c.

HINT: ln
(
1− 1

t

)
≤ −1

t for t > 1.

Given P0, the function H defines P1, . . . , Pλ−1. The probability (over D) that there

are no distinguished point in this list is
(
1− 1

t

)λ
. So, the overall probability is

bounded by

n

(
1− 1

t

)dct lnne
≤ n1+ct ln(1− 1

t) ≤ n1−c

since ln
(
1− 1

t

)
≤ −1

t for t > 1.

In what follows, we take c = 2 and we assume there exists no path of length λ with no
distinguished point.

Q.5 (No abort.)

In a given iteration of the algorithm, show that the probability that the random walk
loops is bounded by t2

n . Deduce that for mt2 ≤ n
2 (where t and m are the parameters of

the algorithms), the algorithm Precomp aborts with a probability bounded by 1
2 .

HINT:
∑+∞

`=1

(
1− 1

t

)`−1
`
n = t2

n

For ` ≥ 1, the probability that the random walk loops after ` steps is the probability
that any of the first ` − 1 steps jumps onto a new point which is not distinguished
(with probability 1− 1

t), and that the last step jumps onto one of the previous `− 1
points. This is bounded by

+∞∑
`=1

(
1− 1

t

)`−1 `

n

which is equal to t2

n . Since we make m random walks, the probability that the algo-

rithm aborts is bounded by mt2

n . So, for mt2 ≤ n
2 , the algorithm Precomp aborts with

a probability bounded by 1
2 .

Q.6 (Many visited points.)

Show that every time the algorithm computes a new point (i.e., starts a new walk or
makes a new step), the probability to stop or to select an already visited point is between
1
t and q = 1

t +
(
1− 1

t

)
mλ
n . Deduce that in each iteration, the probability that the random

walk visits at least v new points is at least (1− q)v.

Let v be the number of already visited points. The new point is one of these with
probability v

n . If not, the only reason to stop is to reach a distinguished point, which
occurs with probability 1

t . So, the probability is v
n +

(
1− v

n

)
1
t . Since 0 ≤ v ≤ mλ, it

is between 1
t and q = 1

t +
(
1− 1

t

)
mλ
n .

For an entire path, let qi be the probability to reach an already visited point or to
stop at the ith step. The probability that this path visits at least v points is thus∑v

i=1(1− q1) · · · (1− qi). We use qi ≤ q to obtain that this is larger than (1− q)v.

By using the Chernoff bound, we deduce that for v such that (1−q)v > 1
2 , more than half of

the iterations visit less than v new points with a probability bounded by e−2((1−q)v− 1
2)

2
m.

In that case, the total number of visited points is at least mv
2 , except with a probability

bounded by this.

In what follows, we assume m =
⌊
n
λt

⌋
and we take v =

⌊
t
4

⌋
.

Q.7 By adjusting t, deduce that for each group generated by some G of order n, there exists
an algorithm with precomputed data of size O(3

√
n) and solving the discrete logarithm

problem with time O(3
√
n) multiplied by some polynomial in terms of logn. (Here the big

O’s are when n tends towards infinity.)

We take t = b 3
√
nc. So, L has size m ∼ n

λt ∼
3
√
n

2 lnn .

In Q.6, we have q ∼ 2
t , v ∼

t
4 , so (1 − q)v ∼ e−

1
2 ≈ 0.61 > 1

2 . Thanks, to Q.6,
Precomp visits at least mv

2 ∼
mt
8 = kn

t points except with negligible probability, with
k ∼ 1

16 lnn .
Following Q.3, one iteration of Dlog succeeds with probability 1

1+16 lnn . So, we have

to iterate 1
k times.

Following Q.4, we assume no long walk. So, Dlog has a complexity bounded by 1
kλ ∼

32 3
√
n(lnn)2.

We have mt2 ∼ n
2 lnn < n

2 . So, thanks to Q.5, Precomp does not abort with probability
at least 1

2 .
Similarly, none of the O(log n) iterations of Dlog aborts, except with negligible prob-
ability.

