Cryptography and Security — Midterm Exam

Serge Vaudenay

6.12.2013

- duration: 3h00
- no document is allowed except one two-sided sheet
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

Ambiguous Power 1

We let n = pq be the product of two different prime numbers p and q. We assume that $\frac{p-1}{2}$ and $\frac{q-1}{2}$ are odd and coprime.

- **Q.1** Show that there exists $z \in \mathbb{N}$ such that $z \equiv 3 \pmod{p}$ and $z \equiv 5 \pmod{q}$ and give a method to compute it.
- **Q.2** Explain how to find some exponent $e \in \mathbb{N}$ such that for every $x \in \mathbb{Z}_n^*$, we have $x^e \equiv x^3$ \pmod{p} and $x^e \equiv x^5 \pmod{q}$.

NOTE: we do expect a complete mathematical proof for this question.

- **Q.3** Application: find such e for p = 7 and q = 11.
- **Q.4** More generally, under which condition on $e_p \in \mathbf{N}$ and $e_q \in \mathbf{N}$ does some $e \in \mathbf{N}$ exist such that $x^e \equiv x^{e_p} \pmod{p}$ and $x^e \equiv x^{e_q} \pmod{q}$ for all $x \in \mathbf{Z}_n^*$?
- Q.5 Could this be interesting to compute two RSA encryptions in parallel (with public keys (n_1, e_1) and (n_2, e_2) in one exponentiation instead of two?

2 Cubic Roots

Let p be an odd prime number.

- **Q.1** In this question only, we assume that $p \mod 3 = 2$. Show that every $x \in \mathbb{Z}_p^*$ has exactly one cubic root and propose a method to compute it.
- **Q.2** (From now on, we assume that $p \mod 3 = 1$.) Show that -1 is a quadratic residue in \mathbb{Z}_p if and only if $p \mod 4 = 1$.

HINT: invoke Legendre.

Q.3 (We recall that $p \mod 3 = 1$.) By considering two cases, compute the Legendre symbol

HINT: we recall the rules to compute the Jacobi symbol:

- $\circ \left(\frac{a}{b}\right) = \left(\frac{a \bmod b}{b}\right) \text{ for } b \text{ odd,}$
- $\begin{pmatrix} \frac{ab}{c} \\ \frac{ab}{c} \end{pmatrix} = \begin{pmatrix} \frac{a}{c} \\ \frac{b}{c} \end{pmatrix} \text{ for } c \text{ odd,}$ $\begin{pmatrix} \frac{2}{a} \\ \frac{a}{c} \end{pmatrix} = 1 \text{ if } a \equiv \pm 1 \pmod{8} \text{ and } \left(\frac{2}{a}\right) = -1 \text{ if } a \equiv \pm 3 \pmod{8} \text{ for } a \text{ odd,}$

- \circ $\left(\frac{a}{b}\right) = -\left(\frac{b}{a}\right)$ if $a \equiv b \equiv 3 \pmod{4}$ and $\left(\frac{a}{b}\right) = \left(\frac{b}{a}\right)$ otherwise for a and b odd.
- **Q.4** (We recall that $p \mod 3 = 1$.) Show that -3 is a quadratic residue.
- **Q.5** (We recall that $p \mod 3 = 1$.) Set j a square root of -3.
- Show that $\frac{-1+j}{2}$ is a cubic root of 1. What are the two others? **Q.6** (We recall that $p \mod 3 = 1$.) Show that for all $x \in \mathbf{Z}_p^*$, x has either 0 or 3 cubic roots.
- **Q.7** If $p \mod 9 = 7$, show that if x is a cubic residue, then $x^{\frac{p+2}{9}} \mod p$ is a cubic root of x. By using j from Q.5, express the two others.
- **Q.8** Propose a variant to RSA in which we would use e=3 but with e and $\varphi(n)$ not coprime.

$\mathbf{3}$ Elliptic Curves with Projective Coordinates

In this exercise, we consider a prime number p > 3. Given $a, b \in \mathbb{Z}_p$ such that $\Delta = -16(4a^3 +$ $(27b^2) \neq 0$, we consider an elliptic curve

$$E_{a,b} = \{\mathcal{O}\} \cup \{(x,y) \in \mathbf{Z}_p^2; y^2 = x^3 + ax + b\}$$

We recall that for $P = (x_p, y_p) \in E_{a,b}$, we define $-P = (x_P, -y_P)$ and that for $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ such that $Q \neq -P$, we define P + Q = R with $R = (x_R, y_R)$ computed by

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } x_P \neq x_Q \\ \frac{3x_P^2 + a}{2y_P} & \text{if } x_P = x_Q \end{cases}$$
$$x_R = \lambda^2 - x_P - x_Q$$
$$y_R = (x_P - x_R)\lambda - y_P$$

The definition of -P and of P+Q is straightforward in other cases of $P,Q \in E_{a,b}$.

In this exercise, we let T_{mul} be the time complexity of one full-size multiplication in \mathbf{Z}_p and T_{inv} be the time complexity of one inversion in \mathbb{Z}_p^* . We assume that the cost of addition and of multiplication by 2 or 3 can be neglected. We also assume that the cost of a square is the same as T_{mul} . The exercises is based on the fact that $T_{\text{inv}} > T_{\text{mul}}$

- **Q.1** Using the recalled formulas, what is the cost of computing P+Q in the $P,Q \in E_{a,b}-\{\mathcal{O}\}$ and $Q \neq -P$ case?
- Q.2 We define

$$E'_{a,b} = \{(x, y, z) \in \mathbf{Z}_p^3; y^2 z = x^3 + axz^2 + bz^3\} - \{(0, 0, 0)\}$$

and a mapping $f: E'_{a,b} \to E_{a,b}$ by $f(x,y,z) = (\frac{x}{z}, \frac{y}{z})$ for $z \neq 0$ and $f(x,y,z) = \mathcal{O}$ otherwise. We propose to represent points of $E_{a,b}$ by one preimage by f. Under which condition do two elements of $E'_{a,b}$ represent the same point in $E_{a,b}$?

Q.3 With the same notations, given $P, Q \in E'_{a,b}$, we define R = P + Q by

$$u = y_{Q}z_{P} - y_{P}z_{Q}$$

$$v = x_{Q}z_{P} - x_{P}z_{Q}$$

$$x_{R} = v(z_{Q}(z_{P}u^{2} - 2x_{P}v^{2}) - v^{3})$$

$$y_{R} = z_{Q}(3x_{P}uv^{2} - y_{P}v^{3} - z_{P}u^{3}) + uv^{3}$$

$$z_{R} = v^{3}z_{P}z_{Q}$$

Show that f(P+Q) = f(P) + f(Q) in the $P \neq Q$ case. HINT: first observe $\lambda = \frac{u}{v}$, then compute $\frac{x_R}{z_R}$ and $\frac{y_R}{z_R}$.

- **Q.4** With the same notations and the proposed representation of points in $E_{a,b}$, what is now the cost of computing P + Q?
 - For which ratio $T_{\mathsf{inv}}/T_{\mathsf{mul}}$ is this competitive in the $P \neq Q$ and $P + Q \neq \mathcal{O}$ case? HINT: think of reusing some intermediate results.
- Q.5 If we do cryptographic operations involving a secret and using the proposed representation method of points, the element of $E'_{a,b}$ may leak some information about the computation. Propose a way to randomize the representation so that it does not leak more than the point itself.