Cryptography and Security - Midterm Exam

Serge Vaudenay

6.12.2013

- duration: 3h00
- no document is allowed except one two-sided sheet
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

1 Ambiguous Power

We let $n=p q$ be the product of two different prime numbers p and q. We assume that $\frac{p-1}{2}$ and $\frac{q-1}{2}$ are odd and coprime.
Q. 1 Show that there exists $z \in \mathbf{N}$ such that $z \equiv 3(\bmod p)$ and $z \equiv 5(\bmod q)$ and give a method to compute it.
Q. 2 Explain how to find some exponent $e \in \mathbf{N}$ such that for every $x \in \mathbf{Z}_{n}^{*}$, we have $x^{e} \equiv x^{3}$ $(\bmod p)$ and $x^{e} \equiv x^{5} \quad(\bmod q)$.
NOTE: we do expect a complete mathematical proof for this question.
Q. 3 Application: find such e for $p=7$ and $q=11$.
Q. 4 More generally, under which condition on $e_{p} \in \mathbf{N}$ and $e_{q} \in \mathbf{N}$ does some $e \in \mathbf{N}$ exist such that $x^{e} \equiv x^{e_{p}} \quad(\bmod p)$ and $x^{e} \equiv x^{e_{q}} \quad(\bmod q)$ for all $x \in \mathbf{Z}_{n}^{*}$?
Q. 5 Could this be interesting to compute two RSA encryptions in parallel (with public keys $\left(n_{1}, e_{1}\right)$ and $\left.\left(n_{2}, e_{2}\right)\right)$ in one exponentiation instead of two?

2 Cubic Roots

Let p be an odd prime number.
Q. 1 In this question only, we assume that $p \bmod 3=2$. Show that every $x \in \mathbf{Z}_{p}^{*}$ has exactly one cubic root and propose a method to compute it.
Q. 2 (From now on, we assume that $p \bmod 3=1$.) Show that -1 is a quadratic residue in \mathbf{Z}_{p} if and only if $p \bmod 4=1$.
HINT: invoke Legendre.
Q. 3 (We recall that $p \bmod 3=1$.) By considering two cases, compute the Legendre symbol $(3 / p)$.
HINT: we recall the rules to compute the Jacobi symbol:
$\circ\left(\frac{a}{b}\right)=\left(\frac{a \bmod b}{b}\right)$ for b odd,

- $\left(\frac{a b}{c}\right)=\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)$ for c odd,
$\circ\left(\frac{2}{a}\right)=1$ if $a \equiv \pm 1 \quad(\bmod 8)$ and $\left(\frac{2}{a}\right)=-1$ if $a \equiv \pm 3 \quad(\bmod 8)$ for a odd,
- $\left(\frac{a}{b}\right)=-\left(\frac{b}{a}\right)$ if $a \equiv b \equiv 3 \quad(\bmod 4)$ and $\left(\frac{a}{b}\right)=\left(\frac{b}{a}\right)$ otherwise for a and b odd.
Q. 4 (We recall that $p \bmod 3=1$.) Show that -3 is a quadratic residue.
Q. 5 (We recall that $p \bmod 3=1$.) Set j a square root of -3 .

Show that $\frac{-1+j}{2}$ is a cubic root of 1 . What are the two others?
Q. 6 (We recall that $p \bmod 3=1$.) Show that for all $x \in \mathbf{Z}_{p}^{*}, x$ has either 0 or 3 cubic roots.
Q. 7 If $p \bmod 9=7$, show that if x is a cubic residue, then $x^{\frac{p+2}{9}} \bmod p$ is a cubic root of x.

By using j from Q.5, express the two others.
Q. 8 Propose a variant to RSA in which we would use $e=3$ but with e and $\varphi(n)$ not coprime.

3 Elliptic Curves with Projective Coordinates

In this exercise, we consider a prime number $p>3$. Given $a, b \in \mathbf{Z}_{p}$ such that $\Delta=-16\left(4 a^{3}+\right.$ $\left.27 b^{2}\right) \neq 0$, we consider an elliptic curve

$$
E_{a, b}=\{\mathcal{O}\} \cup\left\{(x, y) \in \mathbf{Z}_{p}^{2} ; y^{2}=x^{3}+a x+b\right\}
$$

We recall that for $P=\left(x_{p}, y_{p}\right) \in E_{a, b}$, we define $-P=\left(x_{P},-y_{P}\right)$ and that for $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ such that $Q \neq-P$, we define $P+Q=R$ with $R=\left(x_{R}, y_{R}\right)$ computed by

$$
\begin{aligned}
\lambda & =\left\{\begin{array}{l}
\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} \text { if } x_{P} \neq x_{Q} \\
\frac{3 x_{P}^{2}+a}{2 y_{P}} \text { if } x_{P}=x_{Q}
\end{array}\right. \\
x_{R} & =\lambda^{2}-x_{P}-x_{Q} \\
y_{R} & =\left(x_{P}-x_{R}\right) \lambda-y_{P}
\end{aligned}
$$

The definition of $-P$ and of $P+Q$ is straightforward in other cases of $P, Q \in E_{a, b}$.
In this exercise, we let $T_{\text {mul }}$ be the time complexity of one full-size multiplication in \mathbf{Z}_{p} and T_{inv} be the time complexity of one inversion in \mathbf{Z}_{p}^{*}. We assume that the cost of addition and of multiplication by 2 or 3 can be neglected. We also assume that the cost of a square is the same as $T_{\text {mul }}$. The exercises is based on the fact that $T_{\mathrm{inv}}>T_{\mathrm{mul}}$.
Q. 1 Using the recalled formulas, what is the cost of computing $P+Q$ in the $P, Q \in E_{a, b}-\{\mathcal{O}\}$ and $Q \neq-P$ case?
Q. 2 We define

$$
E_{a, b}^{\prime}=\left\{(x, y, z) \in \mathbf{Z}_{p}^{3} ; y^{2} z=x^{3}+a x z^{2}+b z^{3}\right\}-\{(0,0,0)\}
$$

and a mapping $f: E_{a, b}^{\prime} \rightarrow E_{a, b}$ by $f(x, y, z)=\left(\frac{x}{z}, \frac{y}{z}\right)$ for $z \neq 0$ and $f(x, y, z)=\mathcal{O}$ otherwise. We propose to represent points of $E_{a, b}$ by one preimage by f. Under which condition do two elements of $E_{a, b}^{\prime}$ represent the same point in $E_{a, b}$?
Q. 3 With the same notations, given $P, Q \in E_{a, b}^{\prime}$, we define $R=P+Q$ by

$$
\begin{aligned}
u & =y_{Q} z_{P}-y_{P} z_{Q} \\
v & =x_{Q} z_{P}-x_{P} z_{Q} \\
x_{R} & =v\left(z_{Q}\left(z_{P} u^{2}-2 x_{P} v^{2}\right)-v^{3}\right) \\
y_{R} & =z_{Q}\left(3 x_{P} u v^{2}-y_{P} v^{3}-z_{P} u^{3}\right)+u v^{3} \\
z_{R} & =v^{3} z_{P} z_{Q}
\end{aligned}
$$

Show that $f(P+Q)=f(P)+f(Q)$ in the $P \neq Q$ case.
HINT: first observe $\lambda=\frac{u}{v}$, then compute $\frac{x_{R}}{z_{R}}$ and $\frac{y_{R}}{z_{R}}$.
Q. 4 With the same notations and the proposed representation of points in $E_{a, b}$, what is now the cost of computing $P+Q$?
For which ratio $T_{\text {inv }} / T_{\text {mul }}$ is this competitive in the $P \neq Q$ and $P+Q \neq \mathcal{O}$ case?
HINT: think of reusing some intermediate results.
Q. 5 If we do cryptographic operations involving a secret and using the proposed representation method of points, the element of $E_{a, b}^{\prime}$ may leak some information about the computation. Propose a way to randomize the representation so that it does not leak more than the point itself.

