Cryptography and Security — Midterm Exam Solution

Serge Vaudenay

6.12.2013

- duration: 3h00
- no document is allowed except one two-sided sheet
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 Ambiguous Power

We let n = pq be the product of two different prime numbers p and q. We assume that $\frac{p-1}{2}$ and $\frac{q-1}{2}$ are odd and coprime.

Q.1 Show that there exists $z \in \mathbf{N}$ such that $z \equiv 3 \pmod{p}$ and $z \equiv 5 \pmod{q}$ and give a method to compute it.

Since p and q are different prime numbers, they are coprime. So, we can use the Chinese remainder theorem. Let $\alpha = q(q^{-1} \mod p)$ and $\beta = p(p^{-1} \mod q)$. The number $z = 3\alpha + 5\beta$ is such that $z \mod p = 3$ and $z \mod q = 5$.

Q.2 Explain how to find some exponent $e \in \mathbf{N}$ such that for every $x \in \mathbf{Z}_n^*$, we have $x^e \equiv x^3 \pmod{p}$ and $x^e \equiv x^5 \pmod{q}$.

NOTE: we do expect a complete mathematical proof for this question.

Since $\frac{p-1}{2}$ and $\frac{q-1}{2}$ are odd and coprime, 2, $\frac{p-1}{2}$, and $\frac{q-1}{2}$ are coprime. So, we can use the Chinese remainder theorem and find e such that $e \mod 2 = 1$, $e \mod \frac{p-1}{2} = 3$ and $e \mod \frac{q-1}{2} = 5$. Clearly, e and 3 are equal modulo 2 and modulo $\frac{p-1}{2}$, so they are equal modulo p-1. Similarly, e and 5 are equal modulo 2 and modulo $\frac{q-1}{2}$, so they are equal modulo q-1. So, $x^e \equiv x^{e \mod (p-1)} \equiv x^3 \pmod{p}$ and $x^e \equiv x^{e \mod (q-1)} \equiv x^5 \pmod{q}$.

Q.3 Application: find such e for p = 7 and q = 11.

Let $\alpha = 15$, $\beta = 10$, and $\gamma = 6$. We take $e = \alpha + 0\beta + 0\gamma = 15$ and obtain $e \mod 2 = 1$, $e \mod 3 = 3 \mod 3$, and $e \mod 5 = 5 \mod 5$. We can check that $e \mod 6 = 3$ and $e \mod 10 = 5$. **Q.4** More generally, under which condition on $e_p \in \mathbf{N}$ and $e_q \in \mathbf{N}$ does some $e \in \mathbf{N}$ exist such that $x^e \equiv x^{e_p} \pmod{p}$ and $x^e \equiv x^{e_q} \pmod{q}$ for all $x \in \mathbf{Z}_n^*$?

For such e to exist, it is necessary that $e \equiv e_p \pmod{p-1}$ and $e \equiv e_q \pmod{q-1}$. Since both p-1 and q-1 are even, it is necessary that $e \equiv e_p \pmod{2}$ and $e \equiv e_q \pmod{2}$. (mod 2). So, it is necessary that $e_p \equiv e_q \pmod{2}$. This condition is also sufficient: if $e_p \equiv e_q \pmod{2}$, we construct using the Chinese remainder theorem e such that $e \equiv e_p \pmod{2}$ (mod 2), we also have $e \equiv e_q \pmod{2}$), $e \equiv e_p \pmod{\frac{p-1}{2}}$, and $e \equiv e_q \pmod{\frac{q-1}{2}}$. Since $e \equiv e_p \pmod{2}$ and $e \equiv e_p$ (mod $\frac{p-1}{2}$), we deduce $e \equiv e_p \pmod{p-1}$. So, $x^e \equiv x^{e_p} \pmod{p}$. Similarly, we have $e \equiv e_q \pmod{q-1}$. So, $x^e \equiv x^{e_q} \pmod{q}$.

Q.5 Could this be interesting to compute two RSA encryptions in parallel (with public keys (n_1, e_1) and (n_2, e_2)) in one exponentiation instead of two?

Computing $x^{e_1} \mod n_1$ is done using $(\log_2 n_1)^2 \log_2 e_1$ steps. Computing $x^{e_2} \mod n_2$ is done using $(\log_2 n_2)^2 \log_2 e_2$ steps. Computing $x^e \mod (n_1n_1)$ is done using $(\log_2(n_1n_2))^2 \log_2 e$ steps. Since e is likely to be of same size as n_1n_2 , this requires $(\log_2(n_1n_2))^3$ steps. If $n_1 \approx n_2 \approx 2^\ell$ and $e_1 \approx e_2 \approx 2^{\varepsilon}$, the two RSA operations roughly take $2\ell^2 \varepsilon$ steps. The combined computation takes $8\ell^3$ steps. So, this is not interesting. In the case that $e_1 = e_2$, the same computation gives $4\ell^2 \varepsilon$. So, this is not interesting either. Actually, the CRT acceleration consists of doing in in the other way: instead of com-

Actually, the CRT acceleration consists of doing in in the other way: instead of computing one exponentiation modulo a large modulus, it is more interesting to compute several modulo pieces of the modulus.

2 Cubic Roots

Let p be an odd prime number.

Q.1 In this question only, we assume that $p \mod 3 = 2$. Show that every $x \in \mathbf{Z}_p^*$ has exactly one cubic root and propose a method to compute it.

If $p \mod 3 = 2$, then 3 is coprime with p - 1. So, $y \equiv x^3 \pmod{p}$ is equivalent to $y^e \equiv x \pmod{p}$, where $e = 3^{-1} \mod (p - 1)$. So, y has a unique cubic root which is $y^e \mod p$.

Q.2 (From now on, we assume that $p \mod 3 = 1$.) Show that -1 is a quadratic residue in \mathbb{Z}_p if and only if $p \mod 4 = 1$. HINT: invoke Legendre.

-1 is a quadratic residue if and only if (-1/p) = +1. We have $(-1/p) = (-1)^{\frac{p-1}{2}}$ by definition. So, (-1/p) = +1 if and only if $\frac{p-1}{2}$ is even, which is equivalent to $p \mod 4 = 1$.

Q.3 (We recall that $p \mod 3 = 1$.) By considering two cases, compute the Legendre symbol (3/p).

HINT: we recall the rules to compute the Jacobi symbol:

 $\circ \left(\frac{a}{b}\right) = \left(\frac{a \mod b}{b}\right) \text{ for } b \text{ odd,}$ $\circ \left(\frac{ab}{c}\right) = \left(\frac{a}{c}\right) \left(\frac{b}{c}\right) \text{ for } c \text{ odd,}$ $\circ \left(\frac{2}{a}\right) = 1 \text{ if } a \equiv \pm 1 \pmod{8} \text{ and } \left(\frac{2}{a}\right) = -1 \text{ if } a \equiv \pm 3 \pmod{8} \text{ for } a \text{ odd,}$ $\circ \left(\frac{a}{b}\right) = -\left(\frac{b}{a}\right) \text{ if } a \equiv b \equiv 3 \pmod{4} \text{ and } \left(\frac{a}{b}\right) = \left(\frac{b}{a}\right) \text{ otherwise for } a \text{ and } b \text{ odd.}$

Using the quadratic reciprocity leads to distinguishing whether $p \mod 4 = 3$ or not, since $3 \mod 4 = 3$. If $p \mod 4 = 3$, we have (3/p) = -(p/3) = -(1/3) = -1. If $p \mod 4 = 1$, we have (3/p) = (p/3) = (1/3) = 1.

Q.4 (We recall that $p \mod 3 = 1$.) Show that -3 is a quadratic residue.

Based on the previous questions, we can see that $(-3/p) = (-1/p) \cdot (3/p) = 1$ in any case. So, -3 is a quadratic residue.

Q.5 (We recall that $p \mod 3 = 1$.) Set j a square root of -3. Show that $\frac{-1+j}{2}$ is a cubic root of 1. What are the two others?

> Let $\theta = \frac{-1+j}{2}$. We have $\theta^2 = \frac{1-2j+j^2}{4} = \frac{-1-j}{2}$. Then, $\theta^3 = \theta^2 \theta = \frac{1-j^2}{4} = 1$. The two others are 1 and $\theta^2 = \frac{-1-j}{2}$.

Q.6 (We recall that $p \mod 3 = 1$.) Show that for all $x \in \mathbb{Z}_p^*$, x has either 0 or 3 cubic roots.

If x has a cubic root y, then $y\theta$ and $y\theta^2$ are two other cubic roots. We cannot have more than 3 cubic roots in a field. So, either we have none, or we have exactly 3.

Q.7 If $p \mod 9 = 7$, show that if x is a cubic residue, then $x^{\frac{p+2}{9}} \mod p$ is a cubic root of x. By using j from Q.5, express the two others.

As in Q.5, we let j denote a square root of -3 and $\theta = \frac{-1+j}{2}$. Let $y = x^{\frac{p+2}{9}} \mod p$. If $x = z^3 \mod p$, then $y^3 \equiv z^{p+2} \equiv z^3 \equiv x \pmod{p}$ So, y is a cubic root of x. The two others are θy and $\theta^2 y$.

Q.8 Propose a variant to RSA in which we would use e = 3 but with e and $\varphi(n)$ not coprime.

We select two prime numbers p and q such that $p \mod 9 = 7$ and $q \mod 3 = 2$, then form n = pq. We take e = 3, then $d_p = \frac{p+2}{9}$ and $d_q = 3^{-1} \mod (q-1)$. To encrypt, we compute $y = x^3 \mod n$. To decrypt, we compute $x_p = y^{d_p} \mod p$, $x_q = y^{d_q} \mod q$, and $x = \operatorname{CRT}_{p,q}(x_p, x_q)$. If $\operatorname{gcd}(\frac{p-1}{2}, \frac{q-1}{2}) = 1$, since $d_p \mod 2 = d_q \mod 2$, we can find d such that $d \equiv d_p \mod (p-1)$ and $d \equiv d_q \mod (q-1)$. So, we could decrypt directly by $x = y^d \mod n$. In the above proposal, p and q play two different roles. Another option would be more symmetric, with $p \mod 9 = q \mod 9 = 7$ and $d_q = \frac{q+2}{9}$. The proposed cryptosystem has similar properties as the Rabin cryptosystem. (This cryptosystem will be covered in a future lecture.)

3 Elliptic Curves with Projective Coordinates

In this exercise, we consider a prime number p > 3. Given $a, b \in \mathbb{Z}_p$ such that $\Delta = -16(4a^3 + 27b^2) \neq 0$, we consider an elliptic curve

$$E_{a,b} = \{\mathcal{O}\} \cup \{(x,y) \in \mathbf{Z}_p^2; y^2 = x^3 + ax + b\}$$

We recall that for $P = (x_p, y_p) \in E_{a,b}$, we define $-P = (x_P, -y_P)$ and that for $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ such that $Q \neq -P$, we define P + Q = R with $R = (x_R, y_R)$ computed by

$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } x_P \neq x_Q\\ \frac{3x_P^2 + a}{2y_P} & \text{if } x_P = x_Q\\ x_R = \lambda^2 - x_P - x_Q\\ y_R = (x_P - x_R)\lambda - y_P \end{cases}$$

The definition of -P and of P + Q is straightforward in other cases of $P, Q \in E_{a,b}$.

In this exercise, we let T_{mul} be the time complexity of one full-size multiplication in \mathbb{Z}_p and T_{inv} be the time complexity of one inversion in \mathbb{Z}_p^* . We assume that the cost of addition and of multiplication by 2 or 3 can be neglected. We also assume that the cost of a square is the same as T_{mul} . The exercises is based on the fact that $T_{\text{inv}} > T_{\text{mul}}$.

Q.1 Using the recalled formulas, what is the cost of computing P + Q in the $P, Q \in E_{a,b} - \{\mathcal{O}\}$ and $Q \neq -P$ case?

One a/b computation costs $T_{mul} + T_{inv}$. For $P \neq Q$, computing λ costs $T_{mul} + T_{inv}$. Overall, it costs $3T_{mul} + T_{inv}$. For P = Q, computing λ costs $2T_{mul} + T_{inv}$. Overall, it costs $4T_{mul} + T_{inv}$.

Q.2 We define

$$E'_{a,b} = \{(x, y, z) \in \mathbf{Z}_p^3; y^2 z = x^3 + axz^2 + bz^3\} - \{(0, 0, 0)\}$$

and a mapping $f : E'_{a,b} \to E_{a,b}$ by $f(x, y, z) = (\frac{x}{z}, \frac{y}{z})$ for $z \neq 0$ and $f(x, y, z) = \mathcal{O}$ otherwise. We propose to *represent* points of $E_{a,b}$ by one preimage by f. Under which condition do two elements of $E'_{a,b}$ represent the same point in $E_{a,b}$?

Let (x, y, z) and (x', y', z') be elements of $E'_{a,b}$. If z = 0 and z' = 0, they both represent \mathcal{O} . If $z \neq 0$, $z' \neq 0$, $\frac{x}{z} = \frac{x'}{z'}$, and $\frac{y}{z} = \frac{y'}{z'}$, they represent the same point as well. In other cases, they don't. An all-in-one condition could be that xz' = x'z and yz' = y'z.

Q.3 With the same notations, given $P, Q \in E'_{a,b}$, we define R = P + Q by

$$u = y_Q z_P - y_P z_Q$$

$$v = x_Q z_P - x_P z_Q$$

$$x_R = v(z_Q(z_P u^2 - 2x_P v^2) - v^3)$$

$$y_R = z_Q(3x_P u v^2 - y_P v^3 - z_P u^3) + u v^3$$

$$z_R = v^3 z_P z_Q$$

Show that f(P+Q) = f(P) + f(Q) in the $P \neq Q$ case. HINT: first observe $\lambda = \frac{u}{v}$, then compute $\frac{x_R}{z_R}$ and $\frac{y_R}{z_R}$. We can see that $\lambda = \frac{u}{v}$ from the definition. We compute

$$\frac{x_R}{z_R} = \lambda^2 - 2\frac{x_P}{z_P} - \frac{v}{z_P z_Q}$$

and by substituting v we obtain the expression of the first coordinate of f(P) + f(Q). Next,

$$\frac{y_R}{z_R} = 3\lambda \frac{x_P}{z_P} - \frac{y_P}{z_P} - \lambda^3 + \frac{u}{z_P z_O}$$

and by substituting u and one expression for λ , we obtain the expression of the second coordinate of f(P) + f(Q).

Q.4 With the same notations and the proposed representation of points in $E_{a,b}$, what is now the cost of computing P + Q?

For which ratio $T_{\text{inv}}/T_{\text{mul}}$ is this competitive in the $P \neq Q$ and $P + Q \neq O$ case? HINT: think of reusing some intermediate results.

We first compute u and v in a straightforward way using $4T_{mul}$ time. Then, we compute u^2 and v^2 , then uv^2 , v^3 , and uv^3 . So far, it takes $9T_{mul}$ time. We can then compute z_Pu^2 , x_Pv^2 , then $z_Q(z_Pu^2 - 2x_Pv^2)$, and finally x_R . So far, this takes $13T_{mul}$ time. We reuse x_Pv^2 to compute x_Puv^2 , then y_Pv^3 and z_Pu^3 , and finally y_R . So far, this takes $17T_{mul}$ time. We need two more multiplications for z_R and reach $19T_{mul}$ time. There may exist some better strategy to compute P + Q.

- Compared to $3T_{\text{mul}} + T_{\text{inv}}$, this is competitive for $T_{\text{inv}}/T_{\text{mul}} \ge 16$.
- **Q.5** If we do cryptographic operations involving a secret and using the proposed representation method of points, the element of $E'_{a,b}$ may leak some information about the computation. Propose a way to randomize the representation so that it does not leak more than the point itself.

Once we obtain a result P, we can just multiply all coordinates by some random $r \in \mathbf{Z}_p^*$. We obtain a random element of $E'_{a,b}$ representing the same point. So, at an extra cost of $3T_{mul}$, we can hide a possible leak.