Cryptography and Security - Midterm Exam Solution

Serge Vaudenay

6.12.2013

- duration: 3h00
- no document is allowed except one two-sided sheet
- a pocket calculator is allowed
- communication devices are not allowed
- the exam invigilators will not answer any technical question during the exam
- the answers to each exercise must be provided on separate sheets
- readability and style of writing will be part of the grade
- do not forget to put your name on every sheet!

The exam grade follows a linear scale in which each question has the same weight.

1 Ambiguous Power

We let $n=p q$ be the product of two different prime numbers p and q. We assume that $\frac{p-1}{2}$ and $\frac{q-1}{2}$ are odd and coprime.
Q. 1 Show that there exists $z \in \mathbf{N}$ such that $z \equiv 3(\bmod p)$ and $z \equiv 5(\bmod q)$ and give a method to compute it.

Since p and q are different prime numbers, they are coprime. So, we can use the Chinese remainder theorem. Let $\alpha=q\left(q^{-1} \bmod p\right)$ and $\beta=p\left(p^{-1} \bmod q\right)$. The number $z=3 \alpha+5 \beta$ is such that $z \bmod p=3$ and $z \bmod q=5$.
Q. 2 Explain how to find some exponent $e \in \mathbf{N}$ such that for every $x \in \mathbf{Z}_{n}^{*}$, we have $x^{e} \equiv x^{3}$ $(\bmod p)$ and $x^{e} \equiv x^{5} \quad(\bmod q)$.
NOTE: we do expect a complete mathematical proof for this question.
Since $\frac{p-1}{2}$ and $\frac{q-1}{2}$ are odd and coprime, $2, \frac{p-1}{2}$, and $\frac{q-1}{2}$ are coprime. So, we can use the Chinese remainder theorem and find e such that $e \bmod 2=1$, e $\bmod \frac{p-1}{2}=3$ and $e \bmod \frac{q-1}{2}=5$. Clearly, e and 3 are equal modulo 2 and modulo $\frac{p-1}{2}$, so they are equal modulo $p-1$. Similarly, e and 5 are equal modulo 2 and modulo $\frac{q-1}{2}$, so they are equal modulo $q-1$. So, $x^{e} \equiv x^{e \bmod (p-1)} \equiv x^{3} \quad(\bmod p)$ and $x^{e} \equiv x^{e \bmod (q-1)} \equiv x^{5}$ $(\bmod q)$.
Q. 3 Application: find such e for $p=7$ and $q=11$.

Let $\alpha=15, \beta=10$, and $\gamma=6$. We take $e=\alpha+0 \beta+0 \gamma=15$ and obtain $e \bmod 2=1$, $e \bmod 3=3 \bmod 3$, and $e \bmod 5=5 \bmod 5$. We can check that $e \bmod 6=3$ and $e \bmod 10=5$.
Q. 4 More generally, under which condition on $e_{p} \in \mathbf{N}$ and $e_{q} \in \mathbf{N}$ does some $e \in \mathbf{N}$ exist such that $x^{e} \equiv x^{e_{p}} \quad(\bmod p)$ and $x^{e} \equiv x^{e_{q}} \quad(\bmod q)$ for all $x \in \mathbf{Z}_{n}^{*}$?

$$
\begin{aligned}
& \text { For such e to exist, it is necessary that } e \equiv e_{p} \quad(\bmod p-1) \text { and } e \equiv e_{q} \quad(\bmod q-1) . \\
& \text { Since both } p-1 \text { and } q-1 \text { are even, it is necessary that } e \equiv e_{p} \quad(\bmod 2) \text { and } e \equiv e_{q} \\
& (\bmod 2) . S o \text {, it is necessary that } e_{p} \equiv e_{q} \quad(\bmod 2) . \\
& \text { This condition is also sufficient: if } e_{p} \equiv e_{q} \quad(\bmod 2) \text {, we construct using the Chinese } \\
& \text { remainder theorem e such that } e e_{p}(\bmod 2)\left(\text { so, we also have } e \equiv e_{q} \quad(\bmod 2)\right), \\
& e \equiv e_{p}\left(\bmod \frac{p-1}{2}\right) \text {, and } e \equiv e_{q}\left(\bmod \frac{q-1}{2}\right) . \text { Since } e \equiv e_{p}(\bmod 2) \text { and } e \equiv e_{p} \\
& \left(\bmod \frac{p-1}{2}\right) \text {, we deduce } e \equiv e_{p}(\bmod p-1) . S o, x^{e} \equiv x^{e_{p}}(\bmod p) . \text { Similarly, we } \\
& \text { have } e \equiv e_{q}(\bmod q-1) . \text { So, } x^{e} \equiv x^{e_{q}}(\bmod q) .
\end{aligned}
$$

Q. 5 Could this be interesting to compute two RSA encryptions in parallel (with public keys $\left(n_{1}, e_{1}\right)$ and $\left.\left(n_{2}, e_{2}\right)\right)$ in one exponentiation instead of two?

Computing $x^{e_{1}} \bmod n_{1}$ is done using $\left(\log _{2} n_{1}\right)^{2} \log _{2} e_{1}$ steps. Computing $x^{e_{2}} \bmod$ n_{2} is done using $\left(\log _{2} n_{2}\right)^{2} \log _{2} e_{2}$ steps. Computing $x^{e} \bmod \left(n_{1} n_{1}\right)$ is done using $\left(\log _{2}\left(n_{1} n_{2}\right)\right)^{2} \log _{2}$ e steps. Since e is likely to be of same size as $n_{1} n_{2}$, this requires $\left(\log _{2}\left(n_{1} n_{2}\right)\right)^{3}$ steps.
If $n_{1} \approx n_{2} \approx 2^{\ell}$ and $e_{1} \approx e_{2} \approx 2^{\varepsilon}$, the two $R S A$ operations roughly take $2 \ell^{2} \varepsilon$ steps. The combined computation takes $8 \ell^{3}$ steps. So, this is not interesting.
In the case that $e_{1}=e_{2}$, the same computation gives $4 \ell^{2} \varepsilon$. So, this is not interesting either.
Actually, the CRT acceleration consists of doing in in the other way: instead of computing one exponentiation modulo a large modulus, it is more interesting to compute several modulo pieces of the modulus.

2 Cubic Roots

Let p be an odd prime number.
Q. 1 In this question only, we assume that $p \bmod 3=2$. Show that every $x \in \mathbf{Z}_{p}^{*}$ has exactly one cubic root and propose a method to compute it.

If $p \bmod 3=2$, then 3 is coprime with $p-1$. So, $y \equiv x^{3}(\bmod p)$ is equivalent to $y^{e} \equiv x \quad(\bmod p)$, where $e=3^{-1} \bmod (p-1) . S o, y$ has a unique cubic root which is $y^{e} \bmod p$.
Q. 2 (From now on, we assume that $p \bmod 3=1$.) Show that -1 is a quadratic residue in \mathbf{Z}_{p} if and only if $p \bmod 4=1$.
HINT: invoke Legendre.
-1 is a quadratic residue if and only if $(-1 / p)=+1$. We have $(-1 / p)=(-1)^{\frac{p-1}{2}}$ by definition. So, $(-1 / p)=+1$ if and only if $\frac{p-1}{2}$ is even, which is equivalent to $p \bmod 4=1$.
Q. 3 (We recall that $p \bmod 3=1$.) By considering two cases, compute the Legendre symbol (3/p).
HINT: we recall the rules to compute the Jacobi symbol:

- $\left(\frac{a}{b}\right)=\left(\frac{a \bmod b}{b}\right)$ for b odd,
- $\left(\frac{a b}{c}\right)=\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)$ for c odd,
- $\left(\frac{2}{a}\right)=1$ if $a \equiv \pm 1 \quad(\bmod 8)$ and $\left(\frac{2}{a}\right)=-1$ if $a \equiv \pm 3 \quad(\bmod 8)$ for a odd,
- $\left(\frac{a}{b}\right)=-\left(\frac{b}{a}\right)$ if $a \equiv b \equiv 3 \quad(\bmod 4)$ and $\left(\frac{a}{b}\right)=\left(\frac{b}{a}\right)$ otherwise for a and b odd.

Using the quadratic reciprocity leads to distinguishing whether $p \bmod 4=3$ or not, since $3 \bmod 4=3$. If $p \bmod 4=3$, we have $(3 / p)=-(p / 3)=-(1 / 3)=-1$. If $p \bmod 4=1$, we have $(3 / p)=(p / 3)=(1 / 3)=1$.
Q. 4 (We recall that $p \bmod 3=1$.) Show that -3 is a quadratic residue.

Based on the previous questions, we can see that $(-3 / p)=(-1 / p) \cdot(3 / p)=1$ in any case. So, -3 is a quadratic residue.
Q. 5 (We recall that $p \bmod 3=1$.) Set j a square root of -3 .

Show that $\frac{-1+j}{2}$ is a cubic root of 1 . What are the two others?
Let $\theta=\frac{-1+j}{2}$.
We have $\theta^{2}=\frac{1-2 j+j^{2}}{4}=\frac{-1-j}{2}$. Then, $\theta^{3}=\theta^{2} \theta=\frac{1-j^{2}}{4}=1$.
The two others are 1 and $\theta^{2}=\frac{-1-j}{2}$.
Q. 6 (We recall that $p \bmod 3=1$.) Show that for all $x \in \mathbf{Z}_{p}^{*}, x$ has either 0 or 3 cubic roots.

If x has a cubic root y, then $y \theta$ and $y \theta^{2}$ are two other cubic roots. We cannot have more than 3 cubic roots in a field. So, either we have none, or we have exactly 3.
Q. 7 If $p \bmod 9=7$, show that if x is a cubic residue, then $x^{\frac{p+2}{9}} \bmod p$ is a cubic root of x. By using j from Q.5, express the two others.

As in Q.5, we let j denote a square root of -3 and $\theta=\frac{-1+j}{2}$. Let $y=x^{\frac{p+2}{9}} \bmod p$. If $x=z^{3} \bmod p$, then

$$
y^{3} \equiv z^{p+2} \equiv z^{3} \equiv x \quad(\bmod p)
$$

So, y is a cubic root of x. The two others are θy and $\theta^{2} y$.
Q. 8 Propose a variant to RSA in which we would use $e=3$ but with e and $\varphi(n)$ not coprime.

We select two prime numbers p and q such that $p \bmod 9=7$ and $q \bmod 3=2$, then form $n=p q$. We take $e=3$, then $d_{p}=\frac{p+2}{9}$ and $d_{q}=3^{-1} \bmod (q-1)$. To encrypt, we compute $y=x^{3} \bmod n$. To decrypt, we compute $x_{p}=y^{d_{p}} \bmod p, x_{q}=y^{d_{q}} \bmod q$, and $x=\mathrm{CRT}_{p, q}\left(x_{p}, x_{q}\right)$.
If $\operatorname{gcd}\left(\frac{p-1}{2}, \frac{q-1}{2}\right)=1$, since $d_{p} \bmod 2=d_{q} \bmod 2$, we can find d such that $d \equiv$ $d_{p} \bmod (p-1)$ and $d \equiv d_{q} \bmod (q-1)$. So, we could decrypt directly by $x=y^{d} \bmod n$. In the above proposal, p and q play two different roles. Another option would be more symmetric, with $p \bmod 9=q \bmod 9=7$ and $d_{q}=\frac{q+2}{9}$.
The proposed cryptosystem has similar properties as the Rabin cryptosystem. (This cryptosystem will be covered in a future lecture.)

3 Elliptic Curves with Projective Coordinates

In this exercise, we consider a prime number $p>3$. Given $a, b \in \mathbf{Z}_{p}$ such that $\Delta=-16\left(4 a^{3}+\right.$ $\left.27 b^{2}\right) \neq 0$, we consider an elliptic curve

$$
E_{a, b}=\{\mathcal{O}\} \cup\left\{(x, y) \in \mathbf{Z}_{p}^{2} ; y^{2}=x^{3}+a x+b\right\}
$$

We recall that for $P=\left(x_{p}, y_{p}\right) \in E_{a, b}$, we define $-P=\left(x_{P},-y_{P}\right)$ and that for $P=\left(x_{P}, y_{P}\right)$ and $Q=\left(x_{Q}, y_{Q}\right)$ such that $Q \neq-P$, we define $P+Q=R$ with $R=\left(x_{R}, y_{R}\right)$ computed by

$$
\begin{aligned}
\lambda & =\left\{\begin{array}{l}
\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} \text { if } x_{P} \neq x_{Q} \\
\frac{3 x_{P}^{2}+a}{2 y_{P}} \text { if } x_{P}=x_{Q}
\end{array}\right. \\
x_{R} & =\lambda^{2}-x_{P}-x_{Q} \\
y_{R} & =\left(x_{P}-x_{R}\right) \lambda-y_{P}
\end{aligned}
$$

The definition of $-P$ and of $P+Q$ is straightforward in other cases of $P, Q \in E_{a, b}$.
In this exercise, we let $T_{\text {mul }}$ be the time complexity of one full-size multiplication in \mathbf{Z}_{p} and $T_{\text {inv }}$ be the time complexity of one inversion in \mathbf{Z}_{p}^{*}. We assume that the cost of addition and of multiplication by 2 or 3 can be neglected. We also assume that the cost of a square is the same as $T_{\text {mul }}$. The exercises is based on the fact that $T_{\text {inv }}>T_{\text {mul }}$.
Q. 1 Using the recalled formulas, what is the cost of computing $P+Q$ in the $P, Q \in E_{a, b}-\{\mathcal{O}\}$ and $Q \neq-P$ case?

One a / b computation costs $T_{\text {mul }}+T_{\text {inv }}$.
For $P \neq Q$, computing λ costs $T_{\mathrm{mul}}+T_{\mathrm{inv}}$. Overall, it costs $3 T_{\mathrm{mul}}+T_{\mathrm{inv}}$.
For $P=Q$, computing λ costs $2 T_{\mathrm{mul}}+T_{\mathrm{inv}}$. Overall, it costs $4 T_{\mathrm{mul}}+T_{\mathrm{inv}}$.
Q. 2 We define

$$
E_{a, b}^{\prime}=\left\{(x, y, z) \in \mathbf{Z}_{p}^{3} ; y^{2} z=x^{3}+a x z^{2}+b z^{3}\right\}-\{(0,0,0)\}
$$

and a mapping $f: E_{a, b}^{\prime} \rightarrow E_{a, b}$ by $f(x, y, z)=\left(\frac{x}{z}, \frac{y}{z}\right)$ for $z \neq 0$ and $f(x, y, z)=\mathcal{O}$ otherwise. We propose to represent points of $E_{a, b}$ by one preimage by f. Under which condition do two elements of $E_{a, b}^{\prime}$ represent the same point in $E_{a, b}$?

Let (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ be elements of $E_{a, b}^{\prime}$. If $z=0$ and $z^{\prime}=0$, they both represent \mathcal{O}. If $z \neq 0, z^{\prime} \neq 0, \frac{x}{z}=\frac{x^{\prime}}{z^{\prime}}$, and $\frac{y}{z}=\frac{y^{\prime}}{z^{\prime}}$, they represent the same point as well. In other cases, they don't.
An all-in-one condition could be that $x z^{\prime}=x^{\prime} z$ and $y z^{\prime}=y^{\prime} z$.
Q. 3 With the same notations, given $P, Q \in E_{a, b}^{\prime}$, we define $R=P+Q$ by

$$
\begin{aligned}
u & =y_{Q} z_{P}-y_{P} z_{Q} \\
v & =x_{Q} z_{P}-x_{P} z_{Q} \\
x_{R} & =v\left(z_{Q}\left(z_{P} u^{2}-2 x_{P} v^{2}\right)-v^{3}\right) \\
y_{R} & =z_{Q}\left(3 x_{P} u v^{2}-y_{P} v^{3}-z_{P} u^{3}\right)+u v^{3} \\
z_{R} & =v^{3} z_{P} z_{Q}
\end{aligned}
$$

Show that $f(P+Q)=f(P)+f(Q)$ in the $P \neq Q$ case.
HINT: first observe $\lambda=\frac{u}{v}$, then compute $\frac{x_{R}}{z_{R}}$ and $\frac{y_{R}}{z_{R}}$.

We can see that $\lambda=\frac{u}{v}$ from the definition. We compute

$$
\frac{x_{R}}{z_{R}}=\lambda^{2}-2 \frac{x_{P}}{z_{P}}-\frac{v}{z_{P} z_{Q}}
$$

and by substituting v we obtain the expression of the first coordinate of $f(P)+f(Q)$. Next,

$$
\frac{y_{R}}{z_{R}}=3 \lambda \frac{x_{P}}{z_{P}}-\frac{y_{P}}{z_{P}}-\lambda^{3}+\frac{u}{z_{P} z_{Q}}
$$

and by substituting u and one expression for λ, we obtain the expression of the second coordinate of $f(P)+f(Q)$.
Q. 4 With the same notations and the proposed representation of points in $E_{a, b}$, what is now the cost of computing $P+Q$?
For which ratio $T_{\text {inv }} / T_{\text {mul }}$ is this competitive in the $P \neq Q$ and $P+Q \neq \mathcal{O}$ case?
HINT: think of reusing some intermediate results.
We first compute u and v in a straightforward way using $4 T_{\text {mul }}$ time. Then, we compute u^{2} and v^{2}, then $u v^{2}, v^{3}$, and $u v^{3}$. So far, it takes $9 T_{\text {mul }}$ time. We can then compute $z_{P} u^{2}, x_{P} v^{2}$, then $z_{Q}\left(z_{P} u^{2}-2 x_{P} v^{2}\right)$, and finally x_{R}. So far, this takes $13 T_{\text {mul }}$ time. We reuse $x_{P} v^{2}$ to compute $x_{P} u v^{2}$, then $y_{P} v^{3}$ and $z_{P} u^{3}$, and finally y_{R}. So far, this takes $17 T_{\text {mul }}$ time. We need two more multiplications for z_{R} and reach $19 T_{\text {mul }}$ time.
There may exist some better strategy to compute $P+Q$.
Compared to $3 T_{\text {mul }}+T_{\text {inv }}$, this is competitive for $T_{\text {inv }} / T_{\text {mul }} \geq 16$.
Q. 5 If we do cryptographic operations involving a secret and using the proposed representation method of points, the element of $E_{a, b}^{\prime}$ may leak some information about the computation. Propose a way to randomize the representation so that it does not leak more than the point itself.

Once we obtain a result P, we can just multiply all coordinates by some random $r \in \mathbf{Z}_{p}^{*}$. We obtain a random element of $E_{a, b}^{\prime}$ representing the same point. So, at an extra cost of $3 T_{\mathrm{mul}}$, we can hide a possible leak.

