
Cryptography and Security — Midterm Exam

Solution

Serge Vaudenay

25.11.2015

– duration: 1h45

– no documents allowed, except one 2-sided sheet of handwritten notes

– a pocket calculator is allowed

– communication devices are not allowed

– the exam invigilators will not answer any technical question during the exam

– readability and style of writing will be part of the grade

The exam grade follows a linear scale in which each question has the same weight.

1 Vernam with Two Dice

Our crypto apprentice decided to encrypt messages x ∈ Z12 (instead of bits) using the gener-
alized Vernam cipher in the group Z12. As he did not fully understand the course, he decided
to pick a key k (for each x) by rolling two dice (with 6 faces numbered from 1 to 6) and
setting k = k1 + k2 to the sum of the two faces up k1 and k2. The encryption of x with key k
is then y = (x+ k) mod 12.

Q.1 Why is this encryption scheme insecure?

In the generalized Vernam cipher, k must be uniformly distributed in Z12. Here, k
is a number from 2 to 12. It is not a big deal as it is equivalent to use k mod 12,
but the distribution of k mod 12 we obtain is far from being uniform in Z12. For
instance, Pr[k mod 12 = 2] = 1

12 and Pr[k mod 12 = 7] = 1
6 .

Q.2 We still use k = k1+k2. Given a factor n of 12, we now take x ∈ Zn and y = (x+k) mod n.
Show that for some values n, this provides perfect secrecy but for others, this does not.
(Consider all factors n of 12.)

We just have to say for which n is k mod n uniformly distributed. Since k = k1+k2,
the sum of the values k1 and k2 of the two dice, and since k1 and k2 are independent
and uniformly distributed modulo 6, the scheme is secure when n is a factor of 6:
n ∈ {1, 2, 3, 6}. For n = 12, we have seen it is not secure. What remains is n = 4.
k1 mod 4 and k2 mod 4 have distribution Pr[ki mod 4 = i] = 1

6 for i ∈ {0, 3} and
Pr[ki mod 4 = i] = 1

3 for i ∈ {1, 2}. So, Pr[k mod 4 = 0] = 1
4 , Pr[k mod 4 = 1] = 2

9 ,
Pr[k mod 4 = 2] = 1

4 , and Pr[k mod 4 = 3] = 5
18 . So, it is not uniform and the

scheme is not secure for n = 4.

Q.3 Finally, the crypto apprentice decides to encrypt a bit x ∈ {0, 1} into y = (x+ k) mod 4,
still with k = k1 + k2 from rolling the two 6-face dice. We assume that x is uniformly
distributed in {0, 1}. For each c, compute the probabilities Pr[x = 0|y = c] and Pr[x =
1|y = c].

Using the Bayes formula, we have

Pr[x = b|y = c] =
Pr[y = c|x = b] Pr[x = b]∑
b′ Pr[y = c|x = b′] Pr[x = b′]

Clearly, Pr[y = c|x = b′] = Pr[k ≡ c− b′ (mod 4)] due to the independence between
x and k. Since x is uniformly distributed, we obtain

Pr[x = b|y = c] =
Pr[k ≡ c− b]∑
b′ Pr[k ≡ c− b′]

=
Pr[k ≡ c− b]

Pr[k ∈ {c, c− 1}]

where values of k are taken modulo 4. Using the distribution that we computed in
the previous question, we can fill the following table:

c Pr[x = 0|y = c] Pr[x = 1|y = c]

0 9/19 10/19
1 8/17 9/17
2 9/17 8/17
3 10/19 9/19

Q.4 By taking x̃ ∈ {0, 1} as a function of c such that Pr[x = x̃|y = c] is maximal, compute the
probability Pe = Pr[x ̸= x̃] (still when x is uniform in {0, 1}).

We have x̃ = 1 for c = 0, x̃ = 1 for c = 1, x̃ = 0 for c = 2, and x̃ = 0 for c = 3. For
x = 0, x ̸= x̃ when c ∈ {0, 1} so k mod 4 ∈ {0, 1}. For x = 1, x ̸= x̃ when c ∈ {2, 3}
so k mod 4 ∈ {1, 2}. So, Pe =

1
2

(
1
4 + 2

9

)
+ 1

2

(
2
9 + 1

4

)
= 17

36 = 1
2 −

1
36 .

2 Elliptic Curve Factoring Method

In this exercise, we want to recover the smallest prime factor p of an integer n.

Given an elliptic curve Ea,b(p) over Zp, we denote by O the point at infinity. The pro-
cedure to add two points P and Q which has been seen in class can be implemented as
follows:

Add1(Ea,b(p), P,Q)
1: if xP ≡ xQ (mod p) and yP ≡ −yQ (mod p) (equivalent to P = −Q) then
2: return O
3: end if
4: if xP ≡ xQ (mod p) and yP ≡ yQ (mod p) (equivalent to P = Q) then
5: set u = (2yP)

−1 mod p
6: set λ = ((3x2P + a)× u) mod p
7: else
8: set u = (xQ − xP)

−1 mod p
9: set λ = ((yQ − yP)× u) mod p

10: end if
11: set xR = (λ2 − xP − xQ) mod p
12: set yR = ((xP − xR)λ− yP) mod p
13: return R = (xR, yR)

We first consider the following algorithm. (Yes, it uses p but we will later build on it another
algorithm ignoring p.)

Proc1(p)
1: pick some random parameters a, b ∈ Zp, define the elliptic curve Ea,b(p) over Zp by

y2 = x3 + ax+ b and pick a random point S on Ea,b(p)
2: set i = 1
3: while S ̸= O do
4: i← i+ 1
5: S ← i.S with the double-and-add algorithm using Add1(Ea,b(p), P,Q)
6: end while

We let q denote the order of Ea,b(p) over Zp. We assume that, due to selecting a and b at
random, q is a random number between p− 2

√
p and p+ 2

√
p.

Q.1 Show that Proc1 terminates.

Due to the Lagrange Theorem, q.S = O for any initial point S. So, if i is large
enough, q divides i! and for sure, i!.S = O. Hence, Proc1 terminates.

Q.2 Let M(q) be the largest prime factor of q and αj be the largest integer such that jαj

divides q. We assume that the probability that q is such that we have αj ≤
⌊
M(q)
j

⌋
for all

prime j is “very high”, and that the probability that a random point P in Ea,b(p) has an
order multiple of M(q) is also “very high”.

Show that when these two conditions are met, Proc1 terminates with the value i = M(q).

HINT: Show that when the first condition is met, then q divides M(q)!.

HINT2: This question may be a bit harder than the next ones.

Let q =
∏

j
αjk
k be the factorization into primes of q, with αjk > 1 and j1 < j1 < · · ·

primes. Due to the assumption, we have αjk ≤
⌊
M(q)
jk

⌋
. So, q divides

∏
j

⌊
M(q)
jk

⌋
k .

We have ⌊M(q)/j⌋ integers multiple of j between 1 and M(q) so j

⌊
M(q)
jk

⌋
k divides

M(q)! for all k. Since all jk are different primes,
∏

j

⌊
M(q)
jk

⌋
k divides M(q)! as well.

Hence, q divides M(q)!. We deduce that i = M(q) makes the algorithm terminate.
As M(q) is prime, (M(q)− 1)! is not divisible by M(q) so when the order of P is a
multiple of M(q), i = M(q)− 1 does not terminate.
So, i = M(q) is the smallest i making the algorithm terminate.

In what follows, we assume that this implies that the average number of iterations in

Proc1 is e
√

(1+o(1)) ln p ln ln p.

Q.3 We change Proc1 into Proc2 by making computations modulo n instead of modulo p. When
adding two points P and Q, the test P = Q and the test P = −Q are still done modulo p.
We temporarily assume that we can easily pick an element in the curve at random in the
first step of Proc2. Below, we underline what was changed.

Add2(Ea,b(p, n), P,Q)
1: if xP ≡ xQ (mod p) and yP ≡ −yQ (mod p) then
2: return O
3: end if
4: if xP ≡ xQ (mod p) and yP ≡ yQ (mod p) then
5: set u = (2yP)

−1 mod n (abort with an error message if non invertible)
6: set λ = ((3x2P + a)× u) mod n
7: else
8: set u = (xQ − xP)

−1 mod n (abort with an error message if non invertible)
9: set λ = ((yQ − yP)× u) mod n

10: end if
11: set xR = (λ2 − xP − xQ) mod n
12: set yR = ((xP − xR)λ− yP) mod n
13: return R = (xR, yR)

Proc2(p, n)
1: pick some random parameters a, b ∈ Zn, define the curve Ea,b(p, n) over Zn by y2 =

x3 + ax+ b, and pick a random point S on Ea,b(p, n)
2: set i = 1
3: while S ̸= O do
4: i← i+ 1
5: S ← i.S with the double-and-add algorithm using Add2(Ea,b(p, n), P,Q)
6: end while

We execute in parallel Proc1 and Proc2 with the same random seed. We let S1 (resp.
S2) designate the value of the register S in Proc1 (resp. Proc2). Show that at every
step, xS1 ≡ xS2 (mod p) and yS1 ≡ yS2 (mod p) until Proc2 aborts with an error or
terminates.

For any polynomial function f , f(x) mod n mod p = f(x) mod p. This is also the
case when we have divisions, except if we try to divide by something non invertible.
So, by induction, the intermediate results are equal modulo p until we have an illegal
division.

Q.4 Transform Add2 so that any abortion yields a non-trivial factor of n instead of an error.

The original algorithm never tries to divide by something non-invertible. So, the
new algorithm never tries to divide by a multiple of p. If it tries to divide by some
value z which is not invertible modulo n, then gcd(n, z) > 1 and p does not divide
z. So, gcd(n, z) is a non-trivial factor of n. Hence, we can run the extended Euclid
algorithm (u, d) = eEuclid(n, z) to obtain the d = gcd(n, z) and the inverse u of z
modulo n (if d = 1). If d > 1, we can abort and yield d as a non-trivial factor of n.

Q.5 Further transform Add2 so that it does not need p any longer.

HINT: look at what can go wrong if we do the comparisons modulo n.

If two points are equal modulo n, they must be equal modulo p. However, two different
points modulo n may become equal modulo p. What can go wrong is when we add two
points P and Q such that P ̸= −Q modulo n but P = −Q modulo p. In that case,
xQ − xP is a multiple of p but not a multiple of n and we are back in the previous
case which will yield a non-trivial factor of n. If P ̸= Q modulo n but P = Q modulo
p, this is the same.

Q.6 Observe that the first step of Proc2 cannot be done efficiently. Transform this step to
make it doable efficiently and without using p.

HINT: pick S first!

We cannot try to solve y2 = x3+ ax+ b modulo n as we do not know how to extract
roots modulo n. Instead, we pick S = (x, y) at random in Zn then a ∈ Zn at random
then set b = y2 − x3 − ax:

1: pick S = (x, y) ∈ Z2
n at random

2: pick a ∈ Zn at random
3: set b = y2 − x3 − ax

Q.7 Show that the probability that Proc2 terminates with an abortion is “very high” based
on the assumptions from Q.2. Deduce that we can find the smallest prime factor p of n

with complexity e
√

(1+o(1)) ln p ln ln p.

HINT: we do not expect any probability computation, just identify cases when the algo-
rithm does not abort and heuristicaly justify that this is unlikely to happen.

We have seen that Proc1 terminates with “very high” probability with a number of
iterations equal to M(q). If Proc2 terminates without any illegal division, it means
that for each prime factor p′ of n, the order q′ of the curve modulo p′ have all the
same M(q′). Since these orders are random and independent, this is “highly unlikely”
to happen.
Here is the final algorithm:

Add3(Ea,b(n), P,Q)
1: if xP ≡ xQ (mod n) and yP ≡ −yQ (mod n) then
2: return O
3: end if
4: if xP ≡ xQ (mod n) and yP ≡ yQ (mod n) then
5: set (u, d) = eEuclid(n, 2yP)
6: if d > 1, abort and yield d
7: set λ = ((3x2P + a)× u) mod n
8: else
9: set (u, d) = eEuclid(n, xQ − xP)

10: if d > 1, abort and yield d
11: set λ = ((yQ − yP)× u) mod n
12: end if
13: set xR = (λ2 − xP − xQ) mod n
14: set yR = ((xP − xR)λ− yP) mod n
15: return R = (xR, yR)

ECM(n)
1: pick S = (x, y) ∈ Z2

n at random
2: pick a ∈ Zn at random
3: set b = y2 − x3 − ax mod n
4: set i = 1
5: while S ̸= O do
6: i← i+ 1
7: S ← i.S with the double-and-add algorithm using Add3(Ea,b(n), P,Q)
8: end while
9: stop (the algorithm failed)

Based on the previous questions, this algorithm is most likely to yield p, or at least
a non-trivial factor but we can then run it recursively until we find p. Furthermore,

its expected number of iterations is e
√

(1+o(1)) ln p ln ln p.

