
Cryptography and Security — Midterm Exam

Serge Vaudenay

9.12.2016

– duration: 1h45
– no documents allowed, except one 2-sided sheet of handwritten notes
– a pocket calculator is allowed
– communication devices are not allowed
– the exam invigilators will not answer any technical question during the exam
– readability and style of writing will be part of the grade
– answers should not be written with a pencil



1 An Attempt to Fix Double Encryption

We consider a block cipher C over n-bit blocks with a key of n bits. We define EncK1,K2,K3(x) =
CK3(CK1(x) ⊕ K2) where ⊕ is the bitwise XOR operation. This defines a new block cipher
with n-bit blocks and 3n-bit keys. We consider key recovery known plaintext attacks against
Enc using r pairs (xi, yi) such that yi = EncK1,K2,K3(xi) for i = 1, . . . , r.

Throughout this exercise, we measure the time complexity in terms of number of C or
C−1 operations.

Q.1 In this question, we assume that K2 is fixed and equal to 0.
Q.1a Show that the equation yi = EncK1,K2,K3(xi) can be written in the form fi(K1) =

gi(K3) for some functions fi and gi.

Q.1b Using the previous question, describe an attack method with time complexity of order
of magnitude 2n. (Justify the complexity.)



Q.1c Analyze the probability of success (the probability that it produces the correct solution
and only the correct one). Propose (and justify) a minimal value for r to produce a
good result.

Q.2 We now assume that K2 is part of the secret with n bits of entropy.
Q.2a Show that the attack of the previous question can be directly adapted to obtain an

attack of complexity 22n.



Q.2b Show that two equations yi = EncK1,K2,K3(xi) and yj = EncK1,K2,K3(xj) imply an
equation which can be written in the form fi,j(K1) = gi,j(K3) for some functions fi,j
and gi,j .

Q.2c Deduce an attack method of complexity 2n and make the analysis like in Q.1c.



2 The Hill Cipher

Let d be an integer. We define the Hill cipher with security parameter d as follows. The
message space is Zd

26. Messages are strings of d alphabetical characters encoded into Z26. The
key space is the set of invertible d × d matrices over Z26. Given a key K and a message X,
the encryption of X under K is EncK(X) = K ×X with operations modulo 26.

Q.1 Explain how the decryption works.

Q.2 Propose a chosen plaintext key recovery attack with complexity O(d2) using d chosen
plaintexts. (Justify the complexity.)
HINT: assume that read/write of a Z26 element costs O(1) complexity.



Q.3 Given d known plaintext/ciphertext pairs (Xi, Yi) for i = 1, . . . , d, propose a key recovery
attack of complexity O(d4) when d → +∞ and prove the complexity.
WARNING: d4 is lower than d7!
HINT: assume that the Xi vectors are linearly independent!



3 Attribute-Based Encryption

We use an attribute-based encryption scheme. It allows to encrypt a message respective to a
set of attributes att′ so that only people having privileges for at least d of these attributes can
decrypt the ciphertext. People receive a secret sk corresponding to the list of attributes att
that they have. Decryption works only when #(att∩ att′) ≥ d. For instance, an attribute age
could represent people over 25, an attribute licence could represent people owning a driving
licence. To rent a car, customers should get an ignition key M which is encrypted for people
being over 25 and with a driving licence, so with att′ = {age, licence}. Only people with att
including these two privileges should be able to decrypt it and take a car. So, we would set
d = 2. To use this scheme, an authority generates the master secret msk and the master public
key mpk using Setup. Then, it gives attributes att to users and gives them a secret key sk to
allow them to decrypt some ciphertexts. Finally, an encryption function using mpk and a set
of attributes att′ can encrypt messages.

We consider (multiplicative) groups G1 and G2 of prime order p and a bilinear map

e : G1 ×G1 → G2

We recall that it means that we have

e(uavb, w) = e(u,w)ae(v, w)b and e(u, vawb) = e(u, v)ae(u,w)b

for all u, v, w ∈ G1 and a, b ∈ Z. We let g be a generator of G1. We assume that e(g, g) is a
generator of G2. We consider the following algorithms.

Setup(d, n) → (msk,mpk)
1: pick t1, . . . , tn ∈ Z∗

p and y ∈ Zp at random
2: set Ti = gti , i = 1, . . . , n and Y = e(g, g)y

3: set mpk = (d, T1, . . . , Tn, Y ) and msk = (t1, . . . , tn, y)

Gen(msk, att) → sk {msk = (t1, . . . , tn, y), att ⊆ {1, . . . , n} non empty}
1: pick some random polynomial q ∈ Zp[x] of degree at most d− 1 such that q(0) = y in Zp

2: set Di = g
q(i)
ti for i ∈ att

3: set sk = (Di)i∈att {the list of all Di for i ∈ att}
Enc(mpk, att′,M) → ct {mpk = (d, T1, . . . , Tn, Y ), att′ ⊆ {1, . . . , n} non empty, M ∈ G2}
1: pick s ∈ Zp at random
2: set E′ = MY s and Ei = T s

i for i ∈ att′

3: set ct = (E′, (Ei)i∈att′) {E′ and the list of all Ei for i ∈ att′}



Q.1 Let i ̸= j be two attributes. Show that there exist some λi,j , µi,j ∈ Zp such that

∀a, b ∈ Zp λi,j(ai+ b) + µi,j(aj + b) = b (mod p)

Q.2 In this question, we assume that d = 2.
Specify a decryption algorithm Dec(mpk, sk, ct) → M ′ such that for all M , att, i, j ∈ att
such that i ̸= j, when we run

1: Setup(d, n) → (msk,mpk)
2: Gen(msk, att) → sk
3: Enc(mpk, {i, j},M) → ct
4: Dec(mpk, sk, ct) → M ′

then we always have M ′ = M .



Q.3 More generally, let I = {i1, . . . , id} ⊆ {1, . . . , n} be a subset of size d. Show that there
exists a function λI : I → Zp such that

∀q ∈ Zp[x] deg(q) ≤ d− 1 =⇒ λI(i1)q(i1) + · · ·+ λI(id)q(id) = q(0) (mod p)

(q is a polynomial of degree up to d− 1).



Q.4 Specify a decryption algorithm Dec(mpk, sk, ct) → M ′ such that for all d, n, M , att, att′

such that #(att ∩ att′) ≥ d, when we run

1: Setup(d, n) → (msk,mpk)
2: Gen(msk, att) → sk
3: Enc(mpk, att′,M) → ct
4: Dec(mpk, sk, ct) → M ′

then we always have M ′ = M .


