Seminar on Security Protocols and Applications Final Exam

17th July 2006

k	The exam duration is 1h45'.
k	All documents are allowed.
k	No electronic device is allowed.
k	If you do not have enough space on the sheet please use a separate page with your name on and clear references use two different sheets for the different exercises as they will be corrected separately.
	I A CUT NIA MID.
	LAST NAME:
	First Name:

1 RSA-KEM

Given a constant s_D which will serve as a security parameter for a DEM scheme and a constant e, we define the following KEM scheme:

	KEM.Gen : input: a security parameter s_K 1. pick two different prime numbers p and q of $\frac{s_K}{2}$ bits until $\gcd(e,(p-1)(q-1))=1$ 2. set $N=pq,d=e^{-1} \bmod (p-1)(q-1)$ OUTPUT: a public key (N,e) , a private key (N,d)
	KEM.Enc : input: a public key (N, e) 1. generate a s_D -bit AES key K 2. compute $C_0 = K^e \mod N$ output: (C_0, K)
	KEM.Dec : input: a private key (N,d) , an encapsulated key C_0 1. compute $K=C_0^d \mod N$ output: K
1.	. Identify the differences with the RSA-KEM scheme.
2	. We assume that $s_D = 256$ (we want to use DEM based on AES with strong security) and $s_K = 4096$ (same with RSA). We want to use $e = 3$. Show that an adversary can easily decrypt any C_0 by using the public key only.

Shov	$K = K_L + 2^t \cdot K_H$ we that if $K_H = 0$ and tudying the size of C	d if an adversary o	can guess C_H th	en she can decry	$\operatorname{cpt} C_0$ by using the	e public key
Nun	nerical application: a	$\frac{\text{pply this for } s_K = }{}$	$4096, s_D = 256$	$t, t = s_K/e \text{ and } e$	= 17.	
We	now want to use $e =$	$2^{16} + 1.$				
	v that the previous a		feasible.			

5.	Show that the proposed KEM sche ciphertext distinguishing attack.	eme is not secure in	the sense of KEM s	security: devise an	adaptive chosen
	Why isn't this attack applicable to	RSA.KEM?			

	First Name:
2	Attacks on WEP
2.1	FMS Attack
You	are sniffing a WEP connection and want to crack the key. You're no script kiddie and want to implement the attack yourself.
1.	You observe that the WEP driver of the system you are attacking has a bug in the way it generates IVs. Indeed, the last byte of all IVs is always 17. Does this change the number of packets you need to sniff for the FMS attack?
2.	During your sniffing session you discover that every time the IV is {3,255,17} the first byte has a higher than average probability of being 0. What part of the key can you retrieve from this? What is the value of this part?

LAST NAME:

3. With the I part of the	V $\{4, 255, 17\}$ the fire key from this value	st byte is also 0 we? If yes, what is	ith a higher tha its value?	n average proba	bility. Can you c	alculate anothe
l. Assume the attack. Do	at it takes about 2'0 ses it take $\frac{13}{5}$ times:	00'000 sniffed pac more packets to b	ckets to break a break a 13 byte	five byte (40 bit key? Explain wl) WEP key with ny.	a classical FM

2.2 Dictionary Attack

We know that using the fragmentation attack we ca	an reconstruct a full l	key stream for one	e IV by sending	g 34 fragments.
The last phrase of the text about this attack says:				

In practice the AP's initialise their IV to θ and increment it by one at each frame.

	5.	What is the size of the 34 fragments that you have to send to retrieve a full key stream? What is the size of the size of the AP?
	6.	How many fragments would you have to send to create a dictionary of key streams that decrypts 90% of the frames if the AP indeed generates its IVs as explained in the text?
1		

traffic in that ca	 		